OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 21 — Jul. 20, 2006
  • pp: 5143–5153

Reflectivity and optical surface height requirements in a broadband coronagraph.1.Contrast floor due to controllable spatial frequencies

Stuart B. Shaklan and Joseph J. Green  »View Author Affiliations

Applied Optics, Vol. 45, Issue 21, pp. 5143-5153 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (639 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derive the broadband contrast floor in a coronagraphic telescope having nonideal optical surfaces. We consider only fundamental spatial frequencies within the control bandwidth of the coronagraph's deformable mirror. Cross terms arising from the beating of spatial frequencies beyond the deformable mirror control bandwidth will be considered in a second paper. Two wavefront control systems are analyzed:a zero-path difference Michelson interferometer with two deformable mirrors at a pupil image, and a sequential pair of deformable mirrors with one placed at a pupil image. We derive requirements on optical surface figure and reflectivity uniformity for both cases.

© 2006 Optical Society of America

OCIS Codes
(110.6770) Imaging systems : Telescopes
(220.4830) Optical design and fabrication : Systems design

ToC Category:
Optical Design and Fabrication

Original Manuscript: November 17, 2005
Manuscript Accepted: February 17, 2006

Stuart B. Shaklan and Joseph J. Green, "Reflectivity and optical surface height requirements in a broadband coronagraph. 1.Contrast floor due to controllable spatial frequencies," Appl. Opt. 45, 5143-5153 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Ford, A. B. Hull, S. B. Shaklan, M. B. Levine, M. L. White, A. E. Lowman, and E. J. Cohen, "Terrestrial Planet Finder Coronagraph," in Techniques and Instrumentation for Detection of Exoplanets , D. R. Coulter, ed., Proc. SPIE 5170, 1-12 (2003).
  2. F. Malbet, J. Yu, and M. Shao, "High-dynamic range imaging using a deformable mirror for space coronagraphy," Publ. Astron. Soc. Pac. 107, 386 (1995).
  3. M. G. Littman, M. Carr, J. Leighton, E. Burke, D. N. Spergel, and N. J. Kasdin, "Phase and amplitude control ability using spatial light modulation and zero path length difference Michelson interferometer," in Future EUV/UV and Visible Space Missions and Instrumentation, J. C. Blades and O. H. W. Siegmund, eds., Proc. SPIE 4854, 405-412 (2003). [CrossRef]
  4. L. Pueyo, M. G. Littman, M. Carr, N. J. Kasdin, D. N. Spergel, and R. J. Vanderbei, "Amplitude and phase control of pupil coronagraph for exoplanet detection using spatial light modulators," in Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE 5170, 241-249 (2003). [CrossRef]
  5. A. Give'on, N. J. Kasdin, R. J. Vanderbei, and Y. Avitzour, "On representing and correcting wavefront errors in high-contrast imaging systems," J. Opt. Soc. Am. A 23, 1063-1073 (2006). [CrossRef]
  6. R. A. Brown, "Obscurational completeness," Astrophys. J. 607, 1003-1013 (2004). [CrossRef]
  7. W. H. F. Talbot, "Facts relating to optical science, No. IV," Philos. Mag. 9, 401-407 (1836).
  8. L. Pueyo, M. G. Littman, N. J. Kasdin, R. Vanderbei, R. Belikov, and A. Give'on, "Chromaticity effects in adaptive optics:wavelength dependence of amplitude compensation," in Techniques and Instrumentation for Detection of Exolanets II, D. R. Coulter, ed., Proc. SPIE 5903, 190-198 (2005).
  9. J. A. Perreault and A. Wirth, "Survey of adaptive optic techniques," in Focal Plane Arrays for Space Telescopes II, T. J. Grycewicz and C. J. Marshall, eds., Proc. SPIE 5903, 43-50 (2005).
  10. L. Pueyo, Princeton University, Princeton, N.J. 08544 (personal communication, 2005).
  11. P. Z. Mouroulis and S. B. Shaklan, "Optical design of the Terrestrial Planet Finder Coronagraph starlight suppression system," in Current Developments in Lens Design and Optical Engineering VI, P. Z. Mouroulis, W. J. Smith, and R. B. Johnson, eds., Proc. SPIE 5874, 187-197 (2005).
  12. R. P. Linfield, "Wavefront amplitude errors for a TPF Coronagraph: their effects and possible correction," in Optical, Infrared, and Millimeter Space Telescopes, J. C. Mather, ed., Proc. SPIE 5487, 412-422 (2004).
  13. M. A. Ealey and J. T. Trauger, "High density deformable mirrors to enable coronagraphic planet detection," in UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts, H. A. MacEwen, ed., Proc. SPIE 5166, 172-179 (2004). [CrossRef]
  14. D. Palacios, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif. 91109 (personal communication, 2005).
  15. J. S. Taylor, "Progress in meeting stringent optical system requirements in EUV lithography," presented at SPIE's 26th Symposium on Microlithography and Emerging Lithographies V, Santa Clara, Calif., 25 February-2 March, 2001.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited