OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 21 — Jul. 20, 2006
  • pp: 5185–5190

Local-field enhancement in an optical force metallic nanotrap: application to single-molecule spectroscopy

Patrick C. Chaumet, Adel Rahmani, and Manuel Nieto-Vesperinas  »View Author Affiliations

Applied Optics, Vol. 45, Issue 21, pp. 5185-5190 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the local-field enhancement in a nanocavity created by optical nanomanipulation. Recently we showed that a metallic probe can modify the optical force experienced by a metallic particle and generate a material selective trapping potential. We show that the same configuration used for optical forces can be used to control both in magnitude and tune the local-field enhancement around the particle at resonance. The spatial resolution and material selectivity of this technique, allied to its capability to manipulate particles at the nanometric level, may offer a new and versatile way to achieve surface-enhanced Raman scattering spectroscopy at the single-molecule level.

© 2006 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(290.0290) Scattering : Scattering
(300.0300) Spectroscopy : Spectroscopy

ToC Category:

Original Manuscript: October 7, 2005
Revised Manuscript: January 13, 2006
Manuscript Accepted: January 26, 2006

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Patrick C. Chaumet, Adel Rahmani, and Manuel Nieto-Vesperinas, "Local-field enhancement in an optical force metallic nanotrap: application to single-molecule spectroscopy," Appl. Opt. 45, 5185-5190 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-R624 (2002). [CrossRef]
  2. G. P. Wiederrecht, "Near-field optical imaging of noble metal nanoparticles," Eur. Phys. J.: Appl. Phys. 28, 3-18 (2004). [CrossRef]
  3. L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645-648 (1997). [CrossRef]
  4. M. Micic, N. Klymyshyn, Y. D. Suh, and H. P. Lu, "Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy," J. Phys. Chem. B 107, 1574-1584 (2003). [CrossRef]
  5. Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, "Strength of the electric field in apertureless near-field optical microscopy," J. Appl. Phys. 89, 5774-5778 (2001). [CrossRef]
  6. J. T. Krug, E. J. Sánchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," J. Chem. Phys. 116, 10895-10901 (2002). [CrossRef]
  7. J. A. Porto, P. Johansson, S. P. Apell, and T. López-Ríos, "Resonance shift effects in apertureless scanning near-field optical microscopy," Phys. Rev. B 67, 085409 (2003). [CrossRef]
  8. R. Berndt, J. K. Gimzewski, and P. Johansson, "Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces," Phys. Rev. Lett. 67, 3796-3799 (1991). [CrossRef] [PubMed]
  9. R. Berndt, J. K. Gimzewski, and P. Johansson, "Electromagnetic interactions of metallic objects in nanometer proximity," Phys. Rev. Lett. 71, 3493-3496 (1993). [CrossRef] [PubMed]
  10. R. G. Milner and D. Rochards, "The role of tip plasmons in near-field Raman microscopy," J. Microsc. 202, 66-71 (2001). [CrossRef] [PubMed]
  11. F. Festy, A. Demming, and D. Richards, "Resonant excitation of tip plasmons for tip-enhanced Raman SNOM," Ultramicroscopy 100, 437-441 (2004). [CrossRef] [PubMed]
  12. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601-123605 (2002). [CrossRef] [PubMed]
  13. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66, 195405 (2002). [CrossRef]
  14. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Photonic force spectroscopy on metallic and absorbing nanoparticles," Phys. Rev. B 71, 045425 (2005). [CrossRef]
  15. E.D.Palik ed., Handbook of Optical Constants of Solids (Academic, 1985).
  16. P. C. Chaumet, A. Rahmani, F. de Fornel, and J.-P. Dufour, "Evanescent light scattering: The validity of the dipole approximation," Phys. Rev. B 58, 2310-2315 (1998). [CrossRef]
  17. P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B. 61, 14119-14127 (2000). [CrossRef]
  18. A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003). [CrossRef] [PubMed]
  19. H. Xu and M. Käll, "Surface-plasmon-enhanced forces in silver nanoaggregates," Phys. Rev. Lett. 89, 246802 (2002). [CrossRef] [PubMed]
  20. N. Calander and M. Willander, "Optical trapping of single molecules at the detection spots of nanoprobes," Phys. Rev. Lett. 89, 143603-143608 (2002). [CrossRef] [PubMed]
  21. J. M. Gérardy and M. Ausloos, "Absorbtion spectrum of clusters of spheres from the general solution of Maxwell's equation: II. Optical properties of aggregated metal spheres," Phys. Rev. B 30, 2167-2181 (1984). [CrossRef]
  22. H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000). [CrossRef]
  23. R. W. Rendell and D. J. Scalapino, "Surface plasmons confined by microstructures on tunnel junctions," Phys. Rev. B 24, 3276-3294 (1981). [CrossRef]
  24. A. A. Lushnikov, V. V. Maksimenko, and A. J. Simonov, in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), p. 305.
  25. P. Johansson, "Light emission from a scanning tunneling microscope: fully retarded calculation," Phys. Rev. B 58, 10823-10834 (1998). [CrossRef]
  26. We have checked this dependence in the static case (because the system of two spheres is smaller than the wavelength of the illumination) by performing the computation in the bispherical coordinates. [P. C. Chaumet and J.-P. Dufour, "Electric potential and field between two different spheres," J. Electrost. 43, 145-149 (1998)].
  27. A. Rahmani, P. C. Chaumet, and F. de Fornel, "Environment-induced modification of spontaneous emission: single-molecule near-field probe," Phys. Rev. A 63, 023819 (2001). [CrossRef]
  28. T. Iida and H. Ishihara, "Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition," Phys. Rev. Lett. 90, 057403 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited