OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 21 — Jul. 20, 2006
  • pp: 5248–5257

Markov models of integrating spheres for hyperspectral imaging

Džena Hidović-Rowe, Jonathan E. Rowe, and Manuela Lualdi  »View Author Affiliations

Applied Optics, Vol. 45, Issue 21, pp. 5248-5257 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Theoretical models of the signal detected by a CCD camera during hyperspectral imaging with an integrating sphere are derived using Markov chains with absorbing states. The models provide analytical expressions that describe the real reflectance of the sample as a function of the detected signal at each pixel of the image. Validation of the models was done by using reflectance standards and tissue phantoms. The models provide accurate analytical solutions for samples and spheres that are near-Lambertian reflectors.

© 2006 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(120.3150) Instrumentation, measurement, and metrology : Integrating spheres
(120.5700) Instrumentation, measurement, and metrology : Reflection
(300.6170) Spectroscopy : Spectra

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 14, 2005
Revised Manuscript: January 19, 2006
Manuscript Accepted: January 21, 2006

Dzena Hidović-Rowe, Jonathan E. Rowe, and Manuela Lualdi, "Markov models of integrating spheres for hyperspectral imaging," Appl. Opt. 45, 5248-5257 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. G. Goebel, "Generalized integrating-sphere theory," Appl. Opt. 6, 125-128 (1967). [CrossRef] [PubMed]
  2. J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, "Two integrating spheres with an intervening scattering sample," J. Opt. Soc. Am. A 9, 621-631 (1992). [CrossRef]
  3. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, "Double-integrating-sphere system for measuring the optical properties of tissue," Appl. Opt. 32, 399-410 (1993). [CrossRef] [PubMed]
  4. J. S. Dam, T. Dalgaard, P. E. Fabricius, and S. Andersson-Engels, "Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements," Appl. Opt. 39, 1202-1209 (2000). [CrossRef]
  5. L. M. Hanssen, "Effects of non-Lambertian surfaces on integrating sphere measurements," Appl. Opt. 35, 3597-3606 (1996). [CrossRef] [PubMed]
  6. B. G. Crowther, "Computer modeling of integrating spheres," Appl. Opt. 35, 5880-5886 (1996). [CrossRef] [PubMed]
  7. A. V. Prokhorov, S. N. Mekhontsev, and L. M. Hanssen, "Monte Carlo modeling of an integrating sphere reflectometer," Appl. Opt. 42, 3832-3842 (2003). [CrossRef] [PubMed]
  8. D. L. Isaacson and R. W. Madsen, Markov Chains: Theory and Applications (Wiley, New York, 1976).
  9. A. Kienle, L. Lilge, I. A. Vitkin, M. S. Patterson, B. C. Wilson, R. Hibst, and R. Steiner, "Why do veins appear blue? A new look at an old question," Appl. Opt. 35, 1151-1160 (1996). [CrossRef] [PubMed]
  10. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996). [CrossRef] [PubMed]
  11. C. M. Gardner, S. L. Jacques, and A. J. Welch, "Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence," Appl. Opt. 35, 1780-1792 (1996). [CrossRef] [PubMed]
  12. J. M. Geusebroek, A. Dev, R. van den Boomgaard, A. W. M. Smeulders, F. Cornelissen, and H. Geerts, "Color invariant edge detection," in Scale-Space Theories in Computer Vision, LNCS (Springer, 1999), Vol. 1682, pp. 459-464. [CrossRef]
  13. M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, "A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine," Lasers Surg. Med. 28, 237-243 (2001). [CrossRef] [PubMed]
  14. M. Lualdi, A. Colombo, A. Mari, S. Tomatis, and M. Marchesini, "Development of simulated pigmented lesions in an optical skin-tissue phantom: experimental measurements in the visible and near infrared," J Laser Appl. 14, 122-127 (2002). [CrossRef]
  15. T. E. Dielman, Applied Regression Analysis (Duxbury, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited