OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 21 — Jul. 20, 2006
  • pp: 5368–5376

Thermally induced birefringence in Nd:YAG slab lasers

Martin Ostermeyer, Damien Mudge, Peter J. Veitch, and Jesper Munch  »View Author Affiliations


Applied Optics, Vol. 45, Issue 21, pp. 5368-5376 (2006)
http://dx.doi.org/10.1364/AO.45.005368


View Full Text Article

Enhanced HTML    Acrobat PDF (1124 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study thermally induced birefringence in crystalline Nd:YAG zigzag slab lasers and the associated depolarization losses. The optimum crystallographic orientation of the zigzag slab within the Nd:YAG boule and photoelastic effects in crystalline Nd:YAG slabs are briefly discussed. The depolarization is evaluated using the temperature and stress distributions, calculated using a finite element model, for realistically pumped and cooled slabs of finite dimensions. Jones matrices are then used to calculate the depolarization of the zigzag laser mode. We compare the predictions with measurements of depolarization, and suggest useful criteria for the design of the gain media for such lasers.

© 2006 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3530) Lasers and laser optics : Lasers, neodymium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 21, 2005
Manuscript Accepted: January 22, 2006

Citation
Martin Ostermeyer, Damien Mudge, Peter J. Veitch, and Jesper Munch, "Thermally induced birefringence in Nd:YAG slab lasers," Appl. Opt. 45, 5368-5376 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-21-5368


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Mudge, P. J. Veitch, J. Munch, D. Ottaway, and M. W. Hamilton, "High-power diode-laser-pumped cw solid-state lasers using stable-unstable resonators," IEEE J. Sel. Top. Quantum Electron. 3, 19-26 (1997). [CrossRef]
  2. K. Du, N. Wu, J. Xu, J. Giesekus, P. Loosen, and R. Poprawe, "Partially end-pumped Nd:YAG slab laser with a hybrid resonator," Opt. Lett. 23, 370-372 (1998). [CrossRef]
  3. H. Baker, A. A. Chesworth, D. Pelaez Millas, and D. R. Hall, "A planar waveguide Nd:YAG laser with a hybrid waveguide-unstable resonator," Opt. Comm. 191, 125-131 (2001). [CrossRef]
  4. J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser--Part I: theory," IEEE J. Quantum Electron. QE-20, 289-301 (1984). [CrossRef]
  5. T. J. Kane, R. C. Eckardt, and R. L. Byer, "Reduced thermal focusing and birefringence in zigzag slab geometry crystalline lasers," IEEE J. Quantum Electron. QE-19, 1351-1354 (1983). [CrossRef]
  6. Q. Lü, U. Wittrock, and S. Dong, "Photoelastic effect in Nd:YAG rod and slab lasers," Opt. Laser Technol. 27, 95-101 (1995). [CrossRef]
  7. A. Faulstich, H. J. Baker, and D. R. Hall, "Face pumping of thin, solid-state slab lasers with laser diodes," Opt. Lett. 21, 594-596 (1996). [CrossRef] [PubMed]
  8. D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, and M. W. Hamilton, "Power scalable TEMoo cw Nd:YAG laser with thermal lens compensation," IEEE J. Sel. Top. Quantum Electron. 6, 643-649 (2000). [CrossRef]
  9. J. F. Nye, Physical Properties of Crystals (Oxford Science Publications, 2000).
  10. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1970).
  11. W. Koechner and D. K. Rice, "Effect of birefringence on the performance of linearly polarized YAG:Nd lasers," IEEE J. Quantum Electron. QE-6, 557-566 (1970). [CrossRef]
  12. R. W. Dixon, "Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners," J. Appl. Phys. 38, 5149-5153 (1967). [CrossRef]
  13. J. Richards and A. McInnes, "Versatile, efficient, diode-pumped miniature slab laser," Opt. Lett. 20, 371-373 (1995). [CrossRef] [PubMed]
  14. Teflon AF (1601) is an amorphous fluoropolymer solution developed by DuPont Fluoroproducts, P.O. Box 80711, Wilmington, Dela. 19880-0711.
  15. D. Mudge, M. Ostermeyer, D. J. Ottaway, P. J. Veitch, J. Munch, and M. W. Hamilton, "High-power Nd:YAG lasers using stable-unstable resonators," Class. Quantum Grav. 19, 1783-1792 (2002). [CrossRef]
  16. D. C. Brown, "Nonlinear thermal and stress effects and scaling behavior of YAG slab amplifiers," IEEE J. Quantum Electron. 34, 2393-2402 (1998). [CrossRef]
  17. ANSYS finite-element software, Vers. 5.5.3, http://www.ansys.com/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited