OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 21 — Jul. 20, 2006
  • pp: 5385–5390

Energy transfer and photodegradation of a Perylene Orange:LDS821 system in poly(methyl methacrylate)

Wade N. Sisk and Nobuaki Tanaka  »View Author Affiliations

Applied Optics, Vol. 45, Issue 21, pp. 5385-5390 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (128 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The luminescence of Perylene Orange and LDS821 in poly(methyl methacrylate) (PMMA) following a 532   nm irradiation yielded information on photodegradation and energy transfer. The irradiation of the Perylene Orange∕LDS821∕PMMA films resulted in (i) a maximum in the Perylene Orange fluorescence photodegradation profile and (ii) an enhancement of the LDS821 fluorescence relative to the LDS821∕PMMA films. These results are attributed to an energy transfer from the Perylene Orange to the LDS821 with an energy transfer rate constant of 5.19 ± 0 .75   ( 2 σ ) × 10 11 M 1 s 1 and a Förster critical radius of 65.7   Å . Fluorescence half-quenching and time-resolved fluorescence measurements attributed energy transfer to the Förster energy transfer with minor contributions of radiative energy transfer.

© 2006 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.2540) Materials : Fluorescent and luminescent materials
(160.3380) Materials : Laser materials
(160.4890) Materials : Organic materials
(230.7390) Optical devices : Waveguides, planar
(310.2790) Thin films : Guided waves

ToC Category:

Original Manuscript: December 8, 2005
Revised Manuscript: February 3, 2006
Manuscript Accepted: February 12, 2006

Wade N. Sisk and Nobuaki Tanaka, "Energy transfer and photodegradation of a Perylene Orange:LDS821 system in poly(methyl methacrylate)," Appl. Opt. 45, 5385-5390 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Ghioni, F. Zappa, V. P. Kesan, and J. Warnock, "A VSLI-compatible high-speed silicon photodetector for optical data link applications," IEEE Trans. Electron Devices 43, 1054-1060 (1996). [CrossRef]
  2. T. Kobayashi, J. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, "Near-infrared laser emission from luminescent plastic waveguides," Appl. Phys. Lett. 85, 185-187 (2004). [CrossRef]
  3. H. Suzuki, "Self-enhancement in the electroluminescence of a near-infrared ionic dye," Appl. Phys. Lett. 76, 1543-1545 (2000). [CrossRef]
  4. H. Suzuki, "Organic light-emitting materials and devices for optical communication technology," J. Photochem. Photobiol. A 166, 155-161 (2004). [CrossRef]
  5. M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997). [CrossRef]
  6. A. Dubois, M. Canva, A. Brun, F. Chaput, and J. Boilot, "Enhanced photostability of dye molecules trapped in solid xerogel matrixes," Synth. Met. 81, 305-308 (1996). [CrossRef]
  7. R. Pizzoferratoa, L. Lagonigroa, T. Zillerb, A. Di Carlo, R. Paolesse, F. Mandoj, A. Ricci, and C. Lo Sterzo, "Forster energy transfer from poly(arylene-ethynylene)s to an erbium-porphyrin complex," Chem. Phys. 300, 217-225 (2004). [CrossRef]
  8. N. Tanaka, N. Barashkov, J. Heath, and W. N. Sisk, "Photodegradation of polymer-dispersed perylene diimide dyes" Appl. Opt. 45, 3846-3851 (2006). [CrossRef] [PubMed]
  9. D. Su, Y. Yang, G. Qian, Z. Wang, and M. Wang, "Influence of energy transfer on fluorescence and lasing properties of various laser dyes co-doped in ORMOSILs," Chem. Phys. Lett. 397, 397-401 (2004). [CrossRef]
  10. G. A. Kumar, V. Thomas, G. Jose, N. V. Unnikrishnan, and V. P. N. Nampoori, "Energy transfer in Rh 6G:Rh B system in PMMA matrix under cw laser excitation," J. Photochem. Photobiol. A 153, 145-151 (2002). [CrossRef]
  11. A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films--implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (1992). [CrossRef]
  12. P. Sharma, "Polymeric thin films for integrated optics," Ph.D. dissertation (University of Durham, 1992).
  13. N. J. Turro, Modern Molecular Photochemistry (University Science Books, 1991).
  14. R. S. Roller and M. A. Winnik, "The determination of the Foerster distance (R0) for phenanthrene and anthracene Derivatives in poly(methyl methacrylate) films," J. Phys. Chem. B 109, 12261-12269 (2005). [CrossRef]
  15. H. Du, R.-C. A. Fuh, J. Li, L. A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited