OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 21 — Jul. 20, 2006
  • pp: 5391–5403

Picosecond-pulse wavelength conversion based on cascaded second-harmonic generation–difference frequency generation in a periodically poled lithium niobate waveguide

Yong Wang, Jorge Fonseca-Campos, Chang-Qing Xu, Shiquan Yang, Evgueni A. Ponomarev, and Xiaoyi Bao  »View Author Affiliations

Applied Optics, Vol. 45, Issue 21, pp. 5391-5403 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (976 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The wavelength conversion of picosecond optical pulses based on the cascaded second-harmonic generation–difference-frequency generation process in a MgO-doped periodically poled lithium niobate waveguide is studied both experimentally and theoretically. In the experiments, the picosecond pulses are generated from a 40   GHz mode-locked fiber laser and two tunable filters, with which the lasing wavelength can be tuned from 1530 to 1570   nm , and the pulse width can be tuned from 2   to   7   ps . New-frequency pulses, i.e., converted pulses, are generated when the picosecond pulse train and a cw wave interact in the waveguide. The conversion characteristics are systematically investigated when the pulsed and cw waves are alternatively taken as the pump at the quasi-phase-matching wavelength of the device. In particular, the conversion dependences on input pulse width, average power, and pump wavelength are examined quantitatively. Based on the temporal and spectral characteristics of wavelength conversion, a comprehensive analysis on conversion efficiency is presented. The simulation results are in good agreement with the measured data.

© 2006 Optical Society of America

OCIS Codes
(160.3730) Materials : Lithium niobate
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: October 6, 2005
Revised Manuscript: January 17, 2006
Manuscript Accepted: February 13, 2006

Yong Wang, Jorge Fonseca-Campos, Chang-Qing Xu, Shiquan Yang, Evgueni A. Ponomarev, and Xiaoyi Bao, "Picosecond-pulse wavelength conversion based on cascaded second-harmonic generation-difference frequency generation in a periodically poled lithium niobate waveguide," Appl. Opt. 45, 5391-5403 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955-966 (1996). [CrossRef]
  2. J. M. H. Elmirghani and H. T. Mouftah, "All-optical wavelength conversion: technologies and applications in DWDM networks," IEEE Commun. Mag. 38, 86-92 (2000). [CrossRef]
  3. C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559-3561 (1993). [CrossRef]
  4. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, "1.5 μm band wavelength conversion based on difference-frequency generation in LiNbO waveguides with integrated coupling structures," Opt. Lett. 23, 1004-1006 (1998). [CrossRef]
  5. K. Gallo and G. Assanto, "Analysis of lithium niobate all-optical wavelength shifters for the third spectral window," J. Opt. Soc. Am. B 16, 741-753 (1999). [CrossRef]
  6. G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO waveguides using pulsed and CW pumping," Appl. Phys. B 73, 501-504 (2001).
  7. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.55-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photonics Technol. Lett. 11, 653-655 (1999). [CrossRef]
  8. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  9. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second-harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992). [CrossRef]
  10. S. L. Shapiro, "Second harmonic generation in LiNbO3 by picosecond pulses," Appl. Phys. Lett. 13, 19-21 (1968). [CrossRef]
  11. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, "Ultrashort-pulse second harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping," J. Opt. Soc. Am. B 17, 304-318 (2000). [CrossRef]
  12. P. Loza-Alvarez, M. Ebrahimzadeh, W. Sibbett, D. T. Reid, D. Artigas, and M. Missey, "Femtosecond second-harmonic pulse compression in a periodically poled lithium niobate: a systematic comparison of experiment and theory," J. Opt. Soc. Am. B 18, 1212-1217 (2001). [CrossRef]
  13. Z. Zheng, A. M. Weiner, K. R. Parameswaran, M. H. Chou, and M. M. Fejer, "Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group velocity walk-off," J. Opt. Soc. Am. B 19, 839-848 (2002). [CrossRef]
  14. S. M. Saltiel, K. Koynov, B. Agate, and W. Sibbett, "Second-harmonic generation with focused beams under conditions of large group-velocity mismatch," J. Opt. Soc. Am. B 21, 591-598 (2004). [CrossRef]
  15. G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, "Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate," Appl. Phys. Lett. 73, 136-138 (1998). [CrossRef]
  16. C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "Fixed-in variable-out wavelength conversion using LiNbO3 quasiphase-matched wavelength converter," Jpn. J. Appl. Phys. , Part 2 40, L158-L159 (2001). [CrossRef]
  17. C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L881-L883 (2001). [CrossRef]
  18. H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, "Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device," Opt. Quantum Electron. 33, 953-961 (2001). [CrossRef]
  19. H. Ishizuki, T. Suhara, and H. Nishihara, "Numerical analysis of ultra-short pulse wavelength conversion characteristics of LiNbO3 waveguide nonlinear-optic devices," Jpn. Electron. & Comm. 86, 11-20 (2003). [CrossRef]
  20. L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, "Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration," IEEE J. Quantum Electron. 39, 1486-1491 (2003). [CrossRef]
  21. S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," App. Phys. Lett. 84, 1055-1057 (2004). [CrossRef]
  22. E. A. Ponomarev, S. Yang, and X. Bao, "Computer controlled harmonic FM mode-locking of 40 GHz repetition rate fiber laser," in Proc. SPIE 5579, 736-743 (2004). [CrossRef]
  23. B. Chen, C.-Q Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, "Temperature characteristics of 1.5 μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L612-614 (2001). [CrossRef]
  24. Y. Wang, B. Chen, and C.-Q. Xu, "Novel polarization-insensitive QPM wavelength converter with out-of-band pump," Electron. Lett. 40, 189-190 (2004). [CrossRef]
  25. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited