OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 21 — Jul. 20, 2006
  • pp: 5414–5425

Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, Karenia brevis

Susanne E. Craig, Steven E. Lohrenz, Zhongping Lee, Kevin L. Mahoney, Gary J. Kirkpatrick, Oscar M. Schofield, and Robert G. Steward  »View Author Affiliations


Applied Optics, Vol. 45, Issue 21, pp. 5414-5425 (2006)
http://dx.doi.org/10.1364/AO.45.005414


View Full Text Article

Enhanced HTML    Acrobat PDF (367 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We applied two numerical methods to in situ hyperspectral measurements of remote sensing reflectance Rrs to assess the feasibility of remote detection and monitoring of the toxic dinoflagellate, Karenia brevis, which has been shown to exhibit unique absorption properties. First, an existing quasi-analytical algorithm was used to invert remote sensing reflectance spectra, R rs ( λ ) , to derive phytoplankton absorption spectra, a φ     R rs ( λ ) . Second, the fourth derivatives of the a φ     R rs ( λ ) spectra were compared to the fourth derivative of a reference K. brevis absorption spectrum by means of a similarity index (SI) analysis. Comparison of reflectance-derived a φ with filter pad measured a φ found them to agree well ( R 2 = 0.891 ; average percentage difference, 22.8 % ) . A strong correlation ( R 2 = 0.743 ) between surface cell concentration and the SI was observed, showing the potential utility of SI magnitude as an indicator of bloom strength. A sensitivity analysis conducted to investigate the effects of varying levels of cell concentrations and colored dissolved organic matter (CDOM) on the efficacy of the quasi-analytical algorithm and SI found that a φ     R rs ( λ ) could not be derived for very low cell concentrations and that, although it is possible to derive a φ     R rs ( λ ) in the presence of high CDOM concentrations, CDOM levels influence the a φ     R rs ( λ ) amplitude and shape. Results suggest that detection and mapping of K. brevis blooms based on hyperspectral measurements of R rs are feasible.

© 2006 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Remote Sensing

History
Original Manuscript: November 3, 2005
Revised Manuscript: March 10, 2006
Manuscript Accepted: March 13, 2006

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Susanne E. Craig, Steven E. Lohrenz, Zhongping Lee, Kevin L. Mahoney, Gary J. Kirkpatrick, Oscar M. Schofield, and Robert G. Steward, "Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, Karenia brevis," Appl. Opt. 45, 5414-5425 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-21-5414


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Anderson, P. Hoagland, Y. Kaoru, and A. W. White (2000), "Economic impacts from harmful algal blooms (HABs) in the United States," Tech. Rep. WHOI-2000-11 (Woods Hole Oceanographic Institution, 2000).
  2. P. A. Tester and K. A. Steidinger, "Gymnodinium breve red tide blooms: initiation, transport and consequences of surface circulation," Limnol. Oceanogr. 42, 1039-1051 (1997). [CrossRef]
  3. D. F. Millie, O. M. Schofield, G. J. Kirkpatrick, G. Johnsen, P. A. Tester, and B. T. Vinyard, "Detection of harmful algal blooms using photopigments and absorption signatures: a case study of the Florida red tide dinoglagellate, Gymnodinium breve," Limnol. Oceanogr. 42, 1240-1251 (1997). [CrossRef]
  4. O. M. Schofield, J. Grzymski, W. P. Bissett, G. J. Kirkpatrick, D. F. Millie, M. Moline, and C. S. Roesler, "Optical monitoring and forecasting systems for harmful algal blooms: possibility or pipe dream?" J. Phycol. 35, 1477-1496 (1999). [CrossRef]
  5. G. J. Kirkpatrick, O. M. Schofield, D. F. Millie, and M. Moline, "Optical discrimination of a phytoplankton species in natural mixed populations," Limnol. Oceanogr. 45, 467-471 (2000). [CrossRef]
  6. W. L. Butler and D. W. Hopkins, "An analysis of fourth derivative spectra," Photochem. Photobiol. 12, 451-456 (1970). [CrossRef]
  7. E. B. Örnólfsdóttir, J. L. Pinckney, and P. A. Tester, "Quantification of the relative abundance of the toxic dinoflagellate, Kareia brevis (Dinophyta), using unique photopigments," J. Phycol. 39, 449-457 (2003). [CrossRef]
  8. G. J. Kirkpatrick, C. Orrico, M. A. Moline, M. Oliver, and O. M. Schofield, "Continuous hyperspectral absorption measurements of colored dissolved organic material in aquatic systems," Appl. Opt. 42, 6564-6568 (2003). [CrossRef] [PubMed]
  9. G. J. Kirkpatrick, J. Hillier, and C. Boyes, "BreveBuster results from the channel marker at the mouth of Charlotte Harbor," http://isurus.mote.org/∼jhillier/Phytoplankton Ecology/WebDisplay/Display.html.
  10. O. Schofield, R. Chant, J. Kohut, and S. Glenn, "The growth of the New Jersey Shelf Observing System for monitoring plumes and blooms on the Mid-Atlantic continental shelf," presented at OCEANS 2004, Kobe, Japan, 9-12 November 2004.
  11. J. J. Cullen, A. M. Ciotti, R. F. Davis, and M. R. Lewis, "Optical detection and assessment of algal blooms," Limnol. Oceanogr. 42, 1223-1239 (1997). [CrossRef]
  12. P. A. Tester and R. P. Stumpf, "Phytoplankton blooms and remote sensing: what is the potential for early warning?" J. Shellfish Res. 17, 1469-1471 (1998).
  13. R. P. Stumpf, M. E. Culver, P. A. Tester, M. Tomlinson, G. J. Kirkpatrick, B. A. Pederson, E. Truby, V. Ransibrahmanakul, and M. Soracco, "Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data," Harmful Algae 2, 147-160 (2003). [CrossRef]
  14. D. G. Thomas, "The use of SeaWiFS-derived bio-optical properties to characterize harmful algal blooms," M.Sc. thesis (University of Southern Mississippi, 2000).
  15. R. P. Stumpf, "Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms," Human Ecol. Risk Assess. 7, 1363-1368 (2001). [CrossRef]
  16. M. C. Tomlinson, R. P. Stumpf, V. Ransibrahmanakul, E. W. Truby, G. J. Kirkpatrick, B. A. Pederson, G. A. Vargo, and C. A. Heil, "Evaluation of the use of SeaWiFS imagery for detecting Karenia brevis harmful algal blooms in the eastern Gulf of Mexico," Remote Sens. Env. 91, 293-303 (2004). [CrossRef]
  17. J. P. Cannizzaro, K. L. Carder, F. R. Chen, J. J. Walsh, Z. Lee, C. Heil, and T. Villareal, "A novel optical classification technique for detection of red tides in the Gulf of Mexico: application to the 2001-2002 bloom event," in Proceedings of Xth Annual Conference on Harmful Algae (Florida Fish and Wildlife Conservation Commission of UNESCO, 2002), p. 43.
  18. Z. P. Lee, K. L. Carder, and R. A. Arnone, "Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters," Appl. Opt. 41, 5755-5772 (2002). [CrossRef] [PubMed]
  19. D. F. Millie, O. M. Schofield, G. J. Kirkpatrick, G. Johnsen, and T. J. Evens, "Using absorbance and fluorescence spectra to discriminate microalgae," Eur. J. Phycol. 37, 313-322 (2002). [CrossRef]
  20. P. A. Stær and J. J. Cullen, "Detection of Karenia mikimotoi by spectral absorption signatures," J. Plank. Res. 25, 1237-1249 (2003). [CrossRef]
  21. Z. P. Lee, K. L. Carder, R. G. Steward, P. G. Peacock, C. O. Davis, and J. S. Patch, "An empirical algorithm for light absorption by ocean water based on color," J. Geophys. Res. 130, 27,976-27,978 (1998).
  22. Z. P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, and J. L. Mueller, "Method to derive ocean absorption coefficients from remote-sensing reflectance," Appl. Opt. 35, 453-462 (1996). [CrossRef] [PubMed]
  23. K. P. Du, M. X. He, Z. P. Lee, and P. Chen, "A new data processing method for the Satlantic hyper-TSRB," presented at Ocean Optics XVI (Santa Fe, N. Mex., November 18-222002), available on CD-ROM from Society of Photo-optical Instrumentation Engineers (SPIE).
  24. S. E. Lohrenz, "A novel theoretical approach to correct for pathlength amplification and variable sample loading in measurements of particulate spectral absorption by the quantitative filter technique," J. Plank. Res. 22, 639-657 (2000). [CrossRef]
  25. C. S. Roesler, M. J. Perry, and K. L. Carder, "Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters," Limnol. Oceanogr. 34, 1510-1523 (1989). [CrossRef]
  26. C. D. Mobley and L. K. Sundman, "Hydrolight 4.1 technical documentation," Sequoia Scientific Bellevue, WA (2000).
  27. K. L. Mahoney, "Backscattering of light by Karenia brevis and implications for optical detection and monitoring," Ph.D. dissertation(University of Southern Mississippi, 2003).
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  29. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  30. G. L. Fahnenstiel, National Oceanic and Atmospheric Administration/Great Lakes Environmental Research Laboratory (NOAA/GLERL), Lake Michigan Field Station, 1431 Beach Streets Muskegon, Michigan 49441 (personal communication, 2001).
  31. A. Morel and A. Bricaud, "Theoretical results concerning light absorption in a discrete medium an application to specific absorption of phytoplankton," Deep Sea Res. 28, 1375-1393 (1981). [CrossRef]
  32. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  33. A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization," J. Geophys. Res. 100, 13,321-13,332 (1995). [CrossRef]
  34. Z. P. Lee and K. L. Carder, "Absorption spectrum of phytoplankton pigments derived from hyperspectral remote sensing reflectance," Remote Sens. Environ. 89, 361-368 (2004). [CrossRef]
  35. Z. P. Lee, Naval Research Laboratory, Stennis Space Center, MS 39529 (personal communication, 2006).
  36. Florida Marine Research Institute, "Red tides in Florida, 1954-1998: Harmful Algal Bloom Historical Database" (CD-ROM, Version 1.0, 2001).
  37. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semi-analytical radiance model of ocean color," J. Geophy. Res. 93, 10,909-10,924 (1988). [CrossRef]
  38. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization," Appl. Opt. 38, 3831-3843 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited