OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 22 — Aug. 1, 2006
  • pp: 5489–5496

Transmission imaging polarimetry for a linear birefringent medium using a carrier fringe method

Slawomir Drobczynski, Juan M. Bueno, Pablo Artal, and Henryk Kasprzak  »View Author Affiliations


Applied Optics, Vol. 45, Issue 22, pp. 5489-5496 (2006)
http://dx.doi.org/10.1364/AO.45.005489


View Full Text Article

Enhanced HTML    Acrobat PDF (757 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an imaging polarimeter in transmission mode that is based on a carrier frequency method and allows a spatially resolved polarimetric description of nondichroic linear birefringent media. The apparatus incorporates a generator of polarization states in the incoming pathway and a Wollaston prism and a linear polarizer as the analyzer unit. A series of two fringe pattern images of the birefringent sample under study, corresponding to two independent polarization states of the generator unit, were recorded. From these images and by using Fourier analysis, the 2D distribution of azimuth angle and retardation were calculated. Two alternative generator units were used: (i) a linear polarizer combined with a rotatory quarter-wave plate and (ii) a liquid-crystal variable retarder. A uniform quarter-wave plate at different orientations was measured with both generator units to demonstrate the effectiveness and the accuracy of the method. The mean absolute deviations were 1.8° and 4.1° for the azimuth and the retardation, respectively, with the first generator unit, and 2.9° and 4.4° for the second one. Moreover, some nonuniform birefringent samples presenting wider ranges of azimuth and retardation were also tested.

© 2006 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(100.2650) Image processing : Fringe analysis
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(160.1190) Materials : Anisotropic optical materials
(160.3710) Materials : Liquid crystals
(260.1440) Physical optics : Birefringence

ToC Category:
Imaging Polarimeters

History
Original Manuscript: October 25, 2005
Revised Manuscript: April 4, 2006
Manuscript Accepted: April 19, 2006

Citation
Slawomir Drobczynski, Juan M. Bueno, Pablo Artal, and Henryk Kasprzak, "Transmission imaging polarimetry for a linear birefringent medium using a carrier fringe method," Appl. Opt. 45, 5489-5496 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-22-5489


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. S. Gomes, "Photoelasticity" in Optical Metrology, O.D. D.Soares, ed. (Martinus Nijhoff, 1987).
  2. C. Quan, P. Bryanston-Cross, and T. Judge, "Photoelasticity stress analysis using carrier fringe and FFT techniques," Opt. Lasers Eng. 18, 79-108 (1993). [CrossRef]
  3. J. Jaronski and H. Kasprzak, "Generalized algorithm for photoelastic measurements based on phase-stepping imaging polarimetry," Appl. Opt. 38, 7018-7025 (1999). [CrossRef]
  4. R. Walraven, "Polarization imagery," Opt. Eng. 20, 14-18 (1981).
  5. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, "Diffuse backscattering Mueller matrices of highly scattering media," Opt. Express 1, 441-453 (1997). [CrossRef] [PubMed]
  6. S. Jiao and L. V. Wang, "Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography," Opt. Lett. 27, 101-103 (2002). [CrossRef]
  7. J. S. Baba, J.-R. Chung, A. H. DeLaughter, B. D. Cameron, and G. L. Coté, "Development and calibration of an automated Mueller matrix polarization imaging system," J. Biomed. Opt. 7, 341-349 (2002). [CrossRef] [PubMed]
  8. B. Laude-Boulesteix, A. De Martino, B. Drevillon, and L. Schwartz, "Mueller polarimetric imaging system with liquid crystals," Appl. Opt. 43, 2824-2832 (2004). [CrossRef] [PubMed]
  9. G. J. van Blokland, "Ellipsometry of the human retina in vivo: preservation of polarization," J. Opt. Soc. Am. A 2, 72-75 (1985). [CrossRef] [PubMed]
  10. J. M. Bueno and P. Artal, "Double-pass imaging polarimetry in the human eye," Opt. Lett. 24, 64-66 (1999). [CrossRef]
  11. J. M. Bueno, "Measurement of parameters of polarization in the living human eye using imaging polarimetry," Vision Res. 40, 3791-3799 (2000). [CrossRef] [PubMed]
  12. J. Bueno and F. Vargas-Martín, "Measurements of the corneal birefringence with a liquid-crystal imaging polariscope," Appl. Opt. 41, 116-124 (2002). [CrossRef] [PubMed]
  13. J. M. Bueno and M. C. W. Campbell, "Confocal scanning laser ophthalmoscopy improvement by use of Mueller-matrix polarimetry," Opt. Lett. 27, 830-832 (2002). [CrossRef]
  14. B. Pelz, C. Weschenmoser, S. Goelz, J. P. Fischer, R. O. W. Burk, and J. F. Bille, "In vivo measurement of the retinal birefringence with regard on corneal effects using an electro-optical ellipsometer," in Lasers in Ophthalmology IV, R.Birngruber, A.F.Fercher, and P.Sourdille, eds., Proc. SPIE 2930,92-101 (1996).
  15. D. S. Greenfield, R. W. Knighton, and X.-R. Huang, "Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry," Am. J. Ophthalmol. 129, 715-722 (2000). [CrossRef] [PubMed]
  16. Q. Zhou and R. N. Weinreb, "Individualized compensation of anterior segment birefringence during scanning laser polarimetry," Invest. Ophthalmol. Visual Sci. 43, 2221-2228 (2002).
  17. R. M. A. Azzam, "Photopolarimetric measurements of the Mueller matrix by Fourier analysis of a single detected signal," Opt. Lett. 2, 148-150 (1978). [CrossRef] [PubMed]
  18. J. L. Pezzaniti and R. A. Chipman, "Mueller matrix imaging polarimetry," Opt. Eng. 34, 1558-1568 (1995). [CrossRef]
  19. J. M. Bueno, "Polarimetry using liquid-crystal variable retarders: theory and calibration," J. Opt. A Pure Appl. Opt. 2, 216-222 (2000). [CrossRef]
  20. F. Delplancke, "Automated high-speed Mueller matrix scatterometer," Appl. Opt. 36, 5388-5395 (1997). [CrossRef] [PubMed]
  21. R. C. Thompson, J. R. Bottinger, and E. S. Fry, "Measurement of polarized light interactions via the Mueller matrix," Appl. Opt. 19, 1323-1332 (1980). [CrossRef] [PubMed]
  22. G. E. Jellison, Jr., C. O. Griffiths, D. E. Holcomb, and C. M. Rouleau, "Transmission two-modulator generalized ellipsometry measurements," Appl. Opt. 41, 6555-6566 (2002). [CrossRef] [PubMed]
  23. R. A. Chipman, "Polarimetry," in Handbook of Optics, 2nd ed. M.Bass, ed. (McGraw-Hill, 1995) Vol. 2, Chap. 22.
  24. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1992).
  25. M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982). [CrossRef]
  26. Y. Otani, T. Shimada, T. Yoshizawa, and N. Umeda, "Two-dimensional birefringence measurement using the phase shifting technique," Opt. Eng. 33, 1604-1609 (1994). [CrossRef]
  27. K. Oka and T. Kaneko, "Compact complete imaging polarimeter using birefringent wedge prisms," Opt. Express 11, 1510-1519 (2003). [CrossRef] [PubMed]
  28. S. Drobczynski and H. Kasprzak, "Application of space periodic variation of light polarization in imaging polarimetry," Appl. Opt. 44, 3160-3166 (2005). [CrossRef] [PubMed]
  29. J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollinsm, and J. A. Izatt, "Simplified method for polarization-sensitive optical coherence tomography," Opt. Lett. 26, 1069-1071 (2001). [CrossRef]
  30. C. K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. F. Fercher, "Measurement and imaging of birefringence and optics axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express 9, 780-790 (2001). [CrossRef] [PubMed]
  31. M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999).
  32. W. L. Bond, "Measurement of the refractive indices of several crystals," J. Appl. Phys. 36, 1674-1677 (1965). [CrossRef]
  33. F. A. Modine, R. W. Major, and E. Sonder, "High frequency polarization modulation method for measuring birefringence," Appl. Opt. 14, 757-760 (1975). [CrossRef] [PubMed]
  34. C. F. Wong, "Birefringence measurement using a photoelastic modulator," Appl. Opt. 18, 3996-3999 (1979). [CrossRef] [PubMed]
  35. B. L. Wang, "Linear birefringence measurement instrument using two photoelastic modulators," Opt. Eng. 41, 981-987 (2002). [CrossRef]
  36. J. A. Quiroga and A. González-Cano, "Phase measuring algorithm for extraction of isochromatics of photoelastic fringe patterns," Appl. Opt. 36, 8397-8402 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited