OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 22 — Aug. 1, 2006
  • pp: 5497–5503

Optimizing imaging polarimeters constructed with imperfect optics

J. Scott Tyo and Hua Wei  »View Author Affiliations

Applied Optics, Vol. 45, Issue 22, pp. 5497-5503 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (219 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Imaging polarimeters are often designed and optimized by assuming that the polarization properties of the optics are nearly ideal. For example, we often assume that the linear polarizers have infinite extinction ratios. It is also usually assumed that the retarding elements have retardances that do not vary either spatially or with the angle of incidence. We consider the case where the polarization optics used to develop an imaging polarimeter are imperfect. Specifically, we examine the expected performance of a system as the extinction ratio of the diattenuators degrades, as the retardance varies spatially, and as the retardance varies with incidence angle. It is found that the penalty in the signal-to-noise ratio for using diattenuators with low extinction ratios is not severe, as an extinction ratio of 5 causes only a 2.0   dB increase in the noise in the reconstructed Stokes parameter images compared with an ideal diattenuator. Likewise, we find that a system can be optimized in the presence of spatially varying retardance, but that angular positioning error is far more important in rotating retarder imaging polarimeters.

© 2006 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization

ToC Category:
System Modeling and Optimization

Original Manuscript: November 17, 2005
Manuscript Accepted: January 9, 2006

J. Scott Tyo and Hua Wei, "Optimizing imaging polarimeters constructed with imperfect optics," Appl. Opt. 45, 5497-5503 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Walraven, "Polarization imagery," Opt. Eng. 20, 14-18 (1981).
  2. L. B. Wolff, "Surface orientation from polarization images," in Optics, Illumination, and Image Sensing for Machine Vision II, D. J. Svetkoff, ed., Proc. SPIE 850, 110-121 (1987).
  3. L. B. Wolff and T. E. Boult, "Constraining object features using a polarization reflectance model," IEEE Trans. Pattern Anal. Mach. Intell. 13, 635-657 (1991). [CrossRef]
  4. G. D. Lewis, D. L. Jordan, and E. Jakeman, "Backscatter linear and circular polarization analysis of roughened aluminum," Appl. Opt. 37, 5985-5992 (1998).
  5. J. S. Tyo and T. S. Turner, "Variable retardance, Fourier transform imaging spectropolarimeters for visible spectrum remote sensing," Appl. Opt. 40, 1450-1458 (2001).
  6. W. G. Egan, W. R. Johnson, and V. S. Whitehead, "Terrestrial polarization imagery obtained from the space shuttle: characterization and interpretation," Appl. Opt. 30, 435-442 (1991).
  7. R. A. Chipman, "Polarimetry," in Handbook of Optics, M.Bass, ed. (McGraw-Hill, 1995), Vol. 2, Chap. 2.
  8. A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part I," Opt. Eng. 34, 1651-1655 (1995). [CrossRef]
  9. A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part II," Opt. Eng. 34, 1656-1659 (1995). [CrossRef]
  10. V. A. Dlugunovich, V. N. Snopko, and A. V. Tsaruk, "Minimizing the measurement error of the stokes parameters when the setting angles of a phase plate are varied," J. Opt. Technol. 67, 797-800 (2000).
  11. D. S. Sabatke, M. R. Descour, E. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, "Optimization of retardance for a complete Stokes polarimeter," Opt. Lett. 25, 802-804 (2000).
  12. J. S. Tyo, "Design of optimal polarimers: maximization of signal-to-noise ratio and minimization of systematic error," Appl. Opt. 41, 619-630 (2002).
  13. P. Li and J. S. Tyo, "Experimental measurement of optimal polarimeter systems," in Polarization Science and Remote Sensing, J. A. Shaw and J. S. Tyo, eds., Proc. SPIE 5158, 103-112 (2003). [CrossRef]
  14. L. B. Wolff, "Polarization camera for computer vision with a beam splitter," J. Opt. Soc. Am. A 11, 2935-2945 (1994).
  15. D. C. Dayton, B. G. Hoover, and J. D. Gonglewski, "Full-order Mueller matrix polarimeter using liquid-crystal variable retarders," in Optics in Atmospheric Propagation and Adaptive Systems V, A. Kohnle and J. D. Gonglewski, eds., Proc. SPIE 4884, 40-48 (2003). [CrossRef]
  16. C. K. Harnett and H. G. Craighead, "Liquid-crystal micropolarizer for polarization-difference imaging," Appl. Opt. 41, 1291-1296 (2002).
  17. Meadowlark Optics, Boulder, Colo., Liquid Crystal Variable Retarder, http://www.meadowlark.com/.
  18. D. B. Chenault and R. A. Chipman, "Infrared birefringence spectra for cadmium sulfide and cadmium selenide," Appl. Opt. 32, 4223-4227 (1993).
  19. N. J. Pust and J. A. Shaw, "Dual-field imaging polarimeter for studying the effect of clouds on sky and target polarization," in Polarization Science and Remote Sensing II, J. A. Shaw and J. S. Tyo, eds., Proc. SPIE 5888, 295-303 (2005).
  20. N. A. Beaudry, Y. Zhao, and R. Chipman, "Multi-angle generalized ellipsometry of anisotropic optical structures," in Polarizaiton Science and Remote Sensing II, J. A. Shaw and J. S. Tyo, eds., Proc. SPIE 5888, 61-71 (2005).
  21. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. Jones, "Diffractive optical element for Stokes vector measurement with a focal plane array," in Polarization Measurement, Analysis, and Remote Sensing II, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 3754, 169-177 (1999). [CrossRef]
  22. J. K. Boger, J. S. Tyo, B. M. Ratliff, M. P. Fetrow, W. Black, and R. Kumar, "Modeling precision and acuracy of a LWIR microgrid array imaging polarimeter," in Polarization Science and Remote Sensing II, J. A. Shaw and J. S. Tyo, eds., Proc. SPIE 5888, 227-238 (2005).
  23. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  24. R. M. A. Azzam, "Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal," Opt. Lett. 2, 48-50 (1977).
  25. R. M. A. Azzam, I. M. Elminyawi, and A. M. El-Saba, "General analysis and optimization of the four-detector photopolarimeter," J. Opt. Soc. Am. A 5, 681-689 (1988).
  26. C. A. Farlow, D. B. Chenault, K. D. Spradley, M. G. Gulley, M. W. Jones, and C. M. Persons, "Automated registration of polarimetric imagery using fourier transform techniques," in Polarization Measurement, Analysis, and Remote Sensing IV, D. B. Chenault and D. H. Goldstein, eds., Proc. SPIE 4819, 107-117 (2002). [CrossRef]
  27. V. L. Gamiz and J. F. Belsher, "Performance limitations of a four-channel polarimeter in the presence of detection noise," Opt. Eng. 41, 973-980 (2002). [CrossRef]
  28. S.-Y. Lu and R. A. Chipman, "Interpretation of Mueller matrices based on the polar decomposition," J. Opt. Soc. Am. A 13, 1106-1113 (1996).
  29. J. S. Tyo, "Noise equalization in Stokes parameter images obtained by use of variable retardance polarimeters," Opt. Lett. 25, 1198-2000 (2000).
  30. M. H. Smith, J. B. Woodruff, and J. D. Howe, "Beam wander considerations in imaging polarimetry," in Polarization Measurement, Analysis, and Remote Sensing II, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 3754, 50-54 (1999). [CrossRef]
  31. S. H. Sposato, M. P. Fetrow, K. P. Bishop, and T. R. Caudill, "Two long-wave infrared spectral polarimeters for use in remote sensing applications," Opt. Eng. 41, 1055-1064 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited