OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 22 — Aug. 1, 2006
  • pp: 5621–5628

Surface assessment of CaF2 deep-ultraviolet and vacuum-ultraviolet optical components by the quasi-Brewster angle technique

Jue Wang and Robert L. Maier  »View Author Affiliations

Applied Optics, Vol. 45, Issue 22, pp. 5621-5628 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (378 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The requirements for optical components have drastically increased for the deep-ultraviolet and vacuum-ultraviolet spectral regions. Low optical loss, high laser damage threshold, and long lifetime fluoride optics are required for microlithographic applications. A nondestructive quasi-Brewster angle technique (qBAT) has been developed for evaluating the quality of optical surfaces including both top surface and subsurface information. By using effective medium approximation, the negative quasi-Brewster angle shift at wavelengths longer than 200   nm has been used to model the distribution of subsurface damage, whereas the positive quasi-Brewster angle shift for wavelengths shorter than 200   nm has been explained by subsurface contamination. The top surface roughness depicted by the qBAT is consistent with atomic force microscopy measurements. The depth and the microporous structure of the subsurface damage measured by the qBAT has been confirmed by magnetorheological finishing. The technique has been extended to evaluate both polished and antireflection-coated CaF2 components.

© 2006 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(310.0310) Thin films : Thin films

ToC Category:

Original Manuscript: February 28, 2005
Manuscript Accepted: February 16, 2006

Jue Wang and Robert L. Maier, "Surface assessment of CaF2 deep-ultraviolet and vacuum-ultraviolet optical components by the quasi-Brewster angle technique," Appl. Opt. 45, 5621-5628 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Liberman, T. M. Bloomstein, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, and K. Orvek, "Materials issues for optical components and photomasks in 157 nm lithography," J. Vac. Sci. Technol. B 17, 3273-3279 (1999). [CrossRef]
  2. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003), Chap. 1.
  3. S. Gliech, J. Steinert, and A. Duparré, "Light-scattering measurements of optical thin-film components at 157 and 193 nm," Appl. Opt. 41, 3224-3235 (2002).
  4. H. H. Karow, Fabrication Method for Precision Optics (Wiley, 1993), Chap. 5.
  5. I. Zarudi and L. Zhang, "Subsurface damage in single-crystal silicon due to grind and polishing," J. Mater. Sci. 15, 586-587 (1996).
  6. M. G. Schinker, "Subsurface damage mechanisms at high-speed ductile machining of optical glasses," Precis. Eng. 13, 208-218 (1991). [CrossRef]
  7. J. C. Lambropoulos, S. D. Jacobs, B. Gillman, F. Yang, and J. Ruckman, "Subsurface damage in microgrinding optical glasses," Ceram. Trans. 82, 469-474 (1998).
  8. T. Shibata, A. Ono, K. Kurihara, E. Makino, and M. Ikeda, "Cross-section transmission electron microscope observation of diamond-turned single-crystal Si surfaces," Appl. Phys. Lett. 65, 2553-2555 (1994). [CrossRef]
  9. K. Sankaranarayanan, R. R. Sumathi, M. Udhayasankar, P. Jayavel, and J. Kumar, "A new etchant to reveal the subsurface damage on polished gallium arsenide substrates," J. Cryst. Growth 178, 229-232 (1997). [CrossRef]
  10. Y. Ogita, K. Kobayashi, and H. Daio, "Photoconductivity characterization of silicon wafer mirror-polishing subsurface damage related to gate oxide integrity," J. Cryst. Growth 210, 36-39 (2000). [CrossRef]
  11. J. Lambropoulos, B. E. Gillman, Y. Zhou, S. D. Jacobs, and H. J. Stevens, "Deterministic microgrinding, lapping, and polishing," in Optical Manufacturing and Testing II, H. P. Stahl, ed., Proc. SPIE 3134, 178-189 (1998). [CrossRef]
  12. U. Bismayer, E. Brinksmeier, B. Güttle, H. Seibt, and C. Menz, "Measurement of subsurface damage in silicon wafers," Precis. Eng. 16, 139-144 (1994). [CrossRef]
  13. D. A. Lucca, C. J. Wetteland, A. Misra, M. J. Klopfstein, M. Nastasi, C. J. Maggiore, and J. R. Tesmer, "Assessment of substrate damage in polished II-VI semiconductors by ion channeling," Nucl. Instrum. Methods Phys. Res. B 219-220, 611-617 (2004). [CrossRef]
  14. J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, "Subsurface damage in single crystalline optical materials," Appl. Opt. 44, 2241-2249 (2005). [CrossRef]
  15. E. Stenzel, S. Gogoll, J. Sils, M. Huisinga, H. Johansen, G. Kastner, M. Reichling, and E. Matthias, "Laser damage of alkaline-earth fluorides at 248 nm and the influence of polishing grades," Appl. Sur. Sci. 109-110, 162-167 (1997). [CrossRef]
  16. R. Thielsch, J. Heber, A. Duparre, N. Kaiser, K. R. Mann, and E. Eva, "ArF radiation resistance of optical coatings on CaF2 in relation to the surface finish of the substrate," in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 97-104 (1999). [CrossRef]
  17. V. Liberman, M. Rothschild, S. T. Palmacci, N. N. Efremow, J. H. C. Sedlacek, and A. Greniville, "Accelerated damage to blank and antireflectance-coated CaF2 surface under 157-nm laser irradiation," in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE 5040, 1631-1638 (2003). [CrossRef]
  18. R. G. Schhmann, "Quality of optical components and systems for laser applications," in Laser-Induced Damage in Optical Materials; 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 672-680 (1999). [CrossRef]
  19. J. Dijon, E. Quesnel, C. Pellé, and R. Thielsch, "Laser damage of optical coatings from UV to deep UV at 193 nm," in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 45-53 (1999). [CrossRef]
  20. J. Wang, R. L. Maier, and J. H. Burning, "Surface characterization of optically polished CaF2 crystal by quasi-Brewster angle technique," in Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies, A. Duparré and B. Singh, eds. Proc. SPIE 5188, 106-114 (2003). [CrossRef]
  21. J. Wang and R. L. Maier, "Quasi-Brewster angle technique for evaluating the quality of optical surfaces," in Metrology, Inspection, and Process Control for Microlithography XVIII, R. M. Silver, ed., Proc. SPIE 5375, 1286-1294 (2004). [CrossRef]
  22. A. Macleod, Thin-film Optical Filters (Institute of Physics Publishing, 2001), Chap. 2.
  23. A. V. Tikhonravov, M. K. Trubetskov, A. V. Krasilnikova, E. Masetti, A. Duparré, E. Quesnel, and D. Ristau, "Investigation of the surface micro-roughness of fluoride films by spectroscopic ellipsometry," Thin Solid Films 397, 229-237 (2001). [CrossRef]
  24. K. Choi, S. Ghosh, J. Lim, and C. M. Lee, "Removal efficiency of organic contaminations on Si wafer by dry cleaning using UV/O3 and ECR plasma," Appl. Sur. Sci. 206, 355-364 (2003). [CrossRef]
  25. J. N. Hilfiker, C. L. Bungay, R. A. Synowicki, T. E. Tiwald, C. M. Herzinger, B. John, G. K. Pribil, and J. A. Woollam, "Progress in spectroscopic ellipsometry: Applications from vacuum ultraviolet to infrared," J. Vac. Sci. Technol. A 21, 1103-1108 (2003). [CrossRef]
  26. A. B. Shorey, S. D. Jacobs, W. I. Kordonski, and R. F. Gans, "Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing," Appl. Opt. 40, 20-33 (2001).
  27. V. Denks, T. Savikihina, and V. Nagirnyi, "Dependence of luminescence processes and transmission in vacuum-ultraviolet region on surface condition in CaF2 single crystals," Appl. Sur. Sci. 158, 301-309 (2000). [CrossRef]
  28. H. K. Pulker, Coatings on Glass (Elsevier, 1984), Chap. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited