OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 23 — Aug. 10, 2006
  • pp: 6022–6029

Size distribution of mineral aerosol: using light-scattering models in laser particle sizing

Ben Veihelmann, Martin Konert, and Wim J. van der Zande  »View Author Affiliations


Applied Optics, Vol. 45, Issue 23, pp. 6022-6029 (2006)
http://dx.doi.org/10.1364/AO.45.006022


View Full Text Article

Enhanced HTML    Acrobat PDF (633 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The size distribution of semitransparent irregularly shaped mineral dust aerosol samples is determined using a commonly used laser particle-sizing technique. The size distribution is derived from intensity measurements of singly scattered light at various scattering angles close to the forward-scattering direction at a wavelength of 632.8   nm . We analyze the results based on various light-scattering models including diffraction theory, Mie calculations for spheres with various refractive indices, and T-matrix calculations for spheroidal particles. We identify systematic errors of the retrieved size distribution when the semitransparent and nonspherical properties of the particles are neglected. Synthetic light-scattering data for a variety of parameterized size distributions of spheres and spheroids are used to investigate the effect of simplifying assumptions made when the diffraction model or Mie theory is applied in the retrieval.

© 2006 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(290.0290) Scattering : Scattering

History
Original Manuscript: January 9, 2006
Revised Manuscript: March 14, 2006
Manuscript Accepted: March 14, 2006

Citation
Ben Veihelmann, Martin Konert, and Wim J. van der Zande, "Size distribution of mineral aerosol: using light-scattering models in laser particle sizing," Appl. Opt. 45, 6022-6029 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-23-6022


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kocifaj and M. Drzík, "Retrieveing the size distribution of microparticles by scanning the diffraction halo with a mobile ring gap detector," J. Aerosol Sci. 28, 797-804 (1996). [CrossRef]
  2. R. Santer and M. Herman, "Particle size distributions from forward scattered light using the Chahine inversion scheme," Appl. Opt. 22, 2294-2301 (1983). [CrossRef] [PubMed]
  3. H. Volten, O. Muñoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, "Scattering matrices of mineral particles at 441.6 nm and 632.8 nm," J. Geophys. Res. 106, 17375-17401 (2001). [CrossRef]
  4. J. E. Hansen and L. D. Travis, "Light scattering in planetary atmospheres," Space Sci. Rev. 16, 527-610 (1974). [CrossRef]
  5. O. Dubovik, B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, "Variability of absorption and optical properties of key aerosol types observed in worldwide locations," J. Atmos. Sci. 59, 590-608 (2002). [CrossRef]
  6. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  7. D. R, Huffman, "The interaction of light with a small-particle system," Adv. Phys. 26, 129-130 (1977). [CrossRef]
  8. I. N. Sokolik and O. B. Toon, "Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths," J. Geophys. Res. 104, 9423-9444 (1999). [CrossRef]
  9. C. Klein, Manual of Mineral Science, 22nd ed. (Wiley, 2002).
  10. M. I. MishchenkoJ. W. Hovenier, and L. D. Travis, "T-matrix method and its applications," in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 147-172. [CrossRef]
  11. M. I. Mishchenko and L. D. Travis, "Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers," J. Quant. Spectrosc. Radiat. Transfer 60, 309-324 (1998). [CrossRef]
  12. B. Veihelmann, T. Nousiainen, M. Kahnert, and W. J. van der Zande, "Light scattering by small feldspar particles simulated using the discrete dipole approximation for Gaussian random spheres," J. Quant. Spectrosc. Radiat. Transfer 100, 393-405 (2006). [CrossRef]
  13. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  14. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000). [CrossRef]
  15. D. L. Phillips, "A technique for the numerical solution of certain integral equations of the first kind," J. Assoc. Comput. Math. 9, 84-97 (1962). [CrossRef]
  16. A. N. Tikhonov, "On the solution of incorrectly stated problems and a method of regularization," Dokl. Acad. Nauk SSSR 151, 501-504 (1963).
  17. O. Dubovik and M. D. King, "A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements," J. Geophys. Res. 105, 20673-20696 (2000). [CrossRef]
  18. C. D. Rodgers, "Characterization and error analysis of profiles retrieved from remote sounding measurements," J. Geophys. Res. 95, 5587-5595 (1990). [CrossRef]
  19. D. Tanré, Y. J. Kaufman, B. N. Holben, B. Chatenet, A. Karnieli, F. Lavenu, L. Blarel, O. Dubovik, L. A. Remer, and A. Smirnov, "Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data on the solar spectrum," J. Geophys. Res. 106, 18205-18217 (2001). [CrossRef]
  20. T. F. Coleman and Y. Li, "An interior, trust region approach for non-linear minimization subject to bounds," SIAM J. Optim. 27, 960-967 (1970).
  21. M. Kocifaj and H. Horvath, "Inversion of extinction data for irregularly shaped particles," Atmos. Environ. 39, 1481-1495 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited