OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 24 — Aug. 20, 2006
  • pp: 6126–6136

Calculating petal tools by using genetic algorithms

Jorge González-García, Alberto Cordero-Dávila, Irce Leal-Cabrera, Carlos Ignacio Robledo-Sánchez, and Agustin Santiago-Alvarado  »View Author Affiliations

Applied Optics, Vol. 45, Issue 24, pp. 6126-6136 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To pass from a spherical surface to a conic one, it is possible to use a petal tool or a small solid tool that is placed at different time intervals at several radial zones of the glass. Genetic algorithms are applied to calculate the angular sizes of the incomplete annular tools that make up the petal tools. We also present the desired wear results carried out with the petal tool that was designed on the basis of the dwell times of complete annular tools. These dwell times are calculated by using base functions that are generated with annular tools and by applying the genetic algorithms.

© 2006 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4610) Optical design and fabrication : Optical fabrication

Original Manuscript: January 30, 2006
Manuscript Accepted: March 26, 2006

Jorge González-García, Alberto Cordero-Dávila, Irce Leal-Cabrera, Carlos Ignacio Robledo-Sánchez, and Agustin Santiago-Alvarado, "Calculating petal tools by using genetic algorithms," Appl. Opt. 45, 6126-6136 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Cordero-Dávila, J. González-García, M. Pedrayes-López, L. Aguilar-Chiu, J. Cuautle-Cortés, and C. Robledo-Sánchez, "Edge effects with Preston equation for a circular tool and workpiece," Appl. Opt. 43, 1250-1254 (2004). [CrossRef] [PubMed]
  2. F. W. Preston, "The theory and design of plate glass polishing machines," J. Soc. Glass Technol. 11, 214-256 (1927).
  3. M. N. Golovanova, S. S. Kachkin, Ye. I. Krylova, L. S. Tsesnek, and L. I. Shevel'kova, "A method of manufacturing aspherical surfaces which deviate only slightly from the sphere," Sov. J. Opt. Technol. 35, 254-256 (1968).
  4. A. Parra-Flores, A. Cordero-Dávila, J. Cuautle Cortés, C. Robledo Sánchez, J. González-García, and V. Cabrera-Peláez, "Simulación de desgastes en el pulido de superficies con la ecuación de Preston," inProgram of the 46th Congreso Nacional de Física de la Sociedad Mexicana de Física, Bull. Soc. Mex. Fis. Suppl. 49,138 (2003).
  5. R.-S. Chang and P.-Y. Lee, "Computer simulation of loose abrasive grinding aspherical optical surface by local figuring pitch," in Advanced Optical Manufacturing and Testing II, V.J.Doherty, ed., Proc. SPIE 1531,312-317 (1991).
  6. A. Cordero-Dávila, V. Cabrera-Peláez, J. Cuautle-Cortés, J. González-García, C. Robledo-Sánchez, and N. Bautista-Elivar, "Experimental results and wear predictions of petal tools that freely rotate," Appl. Opt. 44, 1434-1441 (2005). [CrossRef] [PubMed]
  7. R. González-Castillo, L. Venegas-Pérez, J. González-García, A. Parra-Flores, and A. Cordero-Dávila, "Análisis cinemático de una máquina pulidora comercial para superficies ópticas," inProgram of the 46th Congreso Nacional de Física de la Sociedad Mexicana de Física, Bull. Soc. Mex. Fis. Suppl. 49,2 (2003).
  8. W. D. Dong, E. S. Putilin, and Y. V. Rudin, "Modeling the velocity and trajectory of the relative motion of a zone of a workpiece during surface lapping," J. Opt. Technol. 70, 573-575 (2003). [CrossRef]
  9. N. J. Brown, "Computationally directed axisymmetric aspheric figuring," Opt. Eng. 17, 602-620 (1978).
  10. Z. Michalewicz, Genetic Algorithms + Date Structures = Evolution Programs (Springer, 1992).
  11. F. J. Cuevas, J. H. Sossa-Azuela, and M. Servin, "A parametric method applied to phase recovery from a fringe pattern based on a genetic algorithm," Opt. Commun. 203, 213-223 (2002). [CrossRef]
  12. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison Wesley, 1992).
  13. R. E. Wagner and R. R. Shannon, "Fabrication of aspherics using a mathematical model for material removal," Appl. Opt. 13, 1683-1689 (1974). [CrossRef] [PubMed]
  14. D. J. Bajuk, "Computer controlled generation of rotationally symmetric aspheric surfaces," Opt. Eng. 15, 401-406 (1976).
  15. A. P. Bogdanov, "Optimizing the technological process of automated grinding and polishing of high-precision large optical elements with a small tool," Opt.-Mekh. Prom-st. 52, 32-36 (1985).
  16. R. Aspden, R. McDonough, and F. R. Nitchie, Jr., "Computer assisted optical surfacing," Appl. Opt. 11, 2739-2747 (1972). [CrossRef] [PubMed]
  17. R. A. Jones, "Optimization of computer controlled polishing," Appl. Opt. 16, 218-224 (1977). [CrossRef] [PubMed]
  18. J. R. Johnson and E. Waluschka, "Optical fabrication-process modeling-analysis tool box," in Advanced Optical Manufacturing and Testing, G.M. Sanger, P.B. Reid, and L.R. Baker, eds., Proc. SPIE 1333,106-117 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited