OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 24 — Aug. 20, 2006
  • pp: 6223–6226

Systematic design process for slanted grating couplers

Bin Wang, Jianhua Jiang, and Gregory P. Nordin  »View Author Affiliations

Applied Optics, Vol. 45, Issue 24, pp. 6223-6226 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (375 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a systematic design process for recently proposed slanted grating couplers (SGCs) that operates in the strong coupling regime. Based on rigorous analysis of SGC properties, this design process utilizes the k-vector diagram and a rigorous grating leaky-mode solver to intentionally enforce the phase-match and Bragg conditions. We demonstrate that the resultant SGC designs have performance similar to those obtained by parallel micro-genetic algorithm ( μGA ) optimization with the two-dimensional finite-difference time-domain (2D FDTD) method. Only two 2D FDTD simulations are necessary in the later stages of our systematic design process. Therefore the time saving is tremendous compared to a μGA 2D FDTD design tool, which can require thousands of individual 2D FDTD simulation runs. We illustrate the utility of our new systematic design process with an embedded slanted grating coupler example.

© 2006 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

Original Manuscript: November 1, 2005
Manuscript Accepted: February 12, 2006

Bin Wang, Jianhua Jiang, and Gregory P. Nordin, "Systematic design process for slanted grating couplers," Appl. Opt. 45, 6223-6226 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Wang, J. Jiang, and G. P. Nordin, "Compact slanted grating couplers," Opt. Express 12, 3313-3326 (2004). [CrossRef] [PubMed]
  2. B. Wang, J. Jiang, and G. P. Nordin, "Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides," IEEE Photon. Technol. Lett. 17, 1884-1886 (2005). [CrossRef]
  3. B. Wang, J. Jiang, D. M. Chambers, J. Cai, and G. P. Nordin, "Stratified waveguide grating coupler for normal fiber incidence," Opt. Lett. 30, 845-847 (2005). [CrossRef] [PubMed]
  4. S. Wu and E. N. Glytsis, "Volume holographic grating couplers: rigorous analysis by use of the finite-difference frequency-domain method," Appl. Opt. 43, 1009-1023 (2004). [CrossRef] [PubMed]
  5. R. A. Villalaz, E. N. Glytsis, and T. K. Gaylord, "Volume grating couplers: polarization and loss effects," Appl. Opt. 41, 5223-5229 (2002). [CrossRef] [PubMed]
  6. M. Li and S. J. Sheard, "Experimental study of waveguide grating couplers with parallelogramic tooth profiles," Opt. Eng. 35, 3101-3106 (1996). [CrossRef]
  7. D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited