OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 24 — Aug. 20, 2006
  • pp: 6270–6282

Time-resolved optical tomography using short-pulse laser for tumor detection

Gopalendu Pal, Soumyadipta Basu, Kunal Mitra, and Tuan Vo-Dinh  »View Author Affiliations

Applied Optics, Vol. 45, Issue 24, pp. 6270-6282 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1814 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Our objective is to perform a comprehensive experimental and numerical analysis of the short-pulse laser interaction with a tissue medium with the goal of tumor–cancer diagnostics. For a short-pulse laser source, the shape of the output signal is a function of the optical properties of the medium, and hence the scattered temporal optical signal helps in understanding the medium characteristics. Initially experiments are performed on tissue phantoms embedded with inhomogeneities to optimize the time-resolved optical detection scheme. Both the temporal and the spatial profiles of the scattered reflected and transmitted optical signals are compared with the numerical modeling results obtained by solving the transient radiative transport equation using the discrete ordinates technique. Next experiments are performed on in vitro rat tissue samples to characterize the interaction of light with skin layers and to validate the time-varying optical signatures with the numerical model. The numerical modeling results and the experimental measurements are in excellent agreement for the different parameters studied. The final step is to perform in vivo imaging of anesthetized rats with tumor-promoting agents injected inside skin tissues and of an anesthetized mouse with mammary tumors to demonstrate the feasibility of the technique for detecting tumors in an animal model.

© 2006 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6920) Medical optics and biotechnology : Time-resolved imaging

Original Manuscript: November 4, 2005
Revised Manuscript: February 8, 2006
Manuscript Accepted: March 7, 2006

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

Gopalendu Pal, Soumyadipta Basu, Kunal Mitra, and Tuan Vo-Dinh, "Time-resolved optical tomography using short-pulse laser for tumor detection," Appl. Opt. 45, 6270-6282 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Andersson-Engels, C. Klintenberg, K. Svanberg, and S. Svanberg, "In vivo fluorescence imaging for tissue diagnostics," Phys. Med. Biol. 42, 815-818 (1997). [CrossRef] [PubMed]
  2. R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnostics," Annu. Rev. Phys. Chem. 47, 555-559 (1996). [CrossRef] [PubMed]
  3. M. Zellweger, P. Grosjean, D. Goujon, P. Monnier, and G. Wagnieres, "In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers," J. Biomed. Opt. 6, 41-51 (2001). [CrossRef] [PubMed]
  4. R. R. Alfano and S. Demos, "Advances in optical biopsy and optical mammography," Ann. NY Acad. Sci. 838, 248-270 (1997). [CrossRef]
  5. T. Vo-Dinh and P. N. Mathur, "Optical diagnostic and therapeutic technologies in pulmonary medcine," in Interventional Bronchoscopy, C. T. Bolliger and P. N. Mathur, eds., Prog. Respir. Res. Basel Karger 30, 267-279 (1999).
  6. R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, and R. E. Petras, "Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy," Gastroint. Endosc. 36, 105-111 (1990). [CrossRef]
  7. R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. J. Choy, and E. Opher, "Fluorescence spectra from cancerous and normal human breast and lung tissues," IEEE J. Quantum Electron. QE23, 1806-1811 (1987). [CrossRef]
  8. G. C. Tang, A. Pradhan, W. Sha, J. Chen, C. H. Liu, S. J. Wahl, and R. R. Alfano, "Pulsed and cw laser fluorescence spectra from cancerous, normal, and chemically treated normal human breast and lung tissues," Appl. Opt. 28, 2337-2342 (1989). [CrossRef] [PubMed]
  9. C. R. Kapadia, F. W. Cutruzzola, K. M. O'Brien, M. L. Stetz, R. Enriquez, and L. I. Deckelbaum, "Laser-induced fluorescence spectroscopy of human colonic mucosa-detection of adenomatous transformation," Gastroenterology 99, 150-157 (1990). [PubMed]
  10. R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, "Spectroscopic diagnosis of colonic dysplacia," Photochem. Photobiol. 10, 15-21 (1992).
  11. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotee, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, "Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential," Lasers Surg. Med. 12, 63-78 (1992). [CrossRef] [PubMed]
  12. T. Vo-Dinh, Biomedical Photonics Handbook (CRC, 2003). [CrossRef]
  13. J. R. Singer, F. A. Grunbaum, P. Kohn, and J. P. Zubelli, "Image reconstruction of the interior of bodies that diffuse radiation," Science 248, 990-993 (1990). [CrossRef] [PubMed]
  14. B. Chance and A. Katzir, eds., "Time-Resolved Spectroscopy and Imaging of Tissue," Proc. SPIE 1431 (1991).
  15. F. Liu, K. M. Yoo, and R. R. Alfano, "Ultrafast laser-pulse transmission and imaging through biological tissue," Appl. Opt. 32, 554-558 (1993). [CrossRef] [PubMed]
  16. S. Proskurin, Y. Yamada, and Y. Takahashi, "Absorption coefficient measurements of strongly scattering media using time-resolved transmittance of a short pulse in near-infrared wavelength range," Opt. Rev. 2, 292-297 (1995). [CrossRef]
  17. O. Minet, G. Muller, and J. Beuthan, Selected Papers on Optical Tomography, Fundamentals and Applications (SPIE, 1998).
  18. A. Gandjbakhche, V. Chernomordik, J. C. Hebden, and R. Nossal, "Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments," Appl. Opt. 37, 1973-1981 (1998). [CrossRef]
  19. V. Tuchin, Tissue Optics (SPIE, 2000).
  20. J. C. Hebden, S. R. Arridge, and D. T. Delpy, "Optical imaging in medicine: I. Experimental techniques," Phys. Med. Biol. 42, 825-840 (1997). [CrossRef] [PubMed]
  21. S. R. Arridge and J. C. Hebden, "Optical imaging in medicine: II. Modeling and reconstruction," Phys. Med. Biol. 42, 841-853 (1997). [CrossRef] [PubMed]
  22. S. K. Gayen and R. R. Alfano, "Sensing lesions in tissues with light," Opt. Express 4, 475-480 (1999). [CrossRef] [PubMed]
  23. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, "Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data," Opt. Lett. 20, 2128-2130 (1995). [CrossRef] [PubMed]
  24. E. Gratton, W. M. Mantulin, M. J. vande Ven, J. B. Fishkin, M. B. Maris, and B. Chance, "A novel approach to laser tomography," Bioimaging 1, 40-46 (1993). [CrossRef]
  25. K. W. Berndt and J. R. Lakowicz, "Detection and localization of absorbers in scattering media using frequency domain principles," in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance and A. Katzis, eds., Proc. SPIE 1431, 149-160 (1991). [CrossRef]
  26. M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Experimental images of heterogeneous turbid media by frequency domain diffusing photon tomography," Opt. Lett. 20, 426-428 (1995). [CrossRef] [PubMed]
  27. Y. Yamada, "Light-tissue interaction and optical imaging in biomedicine," Ann. Rev. Fluid Mech. Heat Transfer 6, 1-59 (1995).
  28. S. Kumar, K. Mitra, and Y. Yamada, "Hyperbolic damped-wave models for transient light-pulse propagation in scattering media," Appl. Opt. 35, 3372-3378 (1996). [CrossRef] [PubMed]
  29. K. M. Yoo, F. Liu, and R. R. Alfano, "When does the diffusion approximation fail to describe the photon transport in random media," Phys. Rev. Lett. 65, 2647-2650 (1990). [CrossRef]
  30. G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, "Time-gated transillumination of biological tissues and tissue like phantoms," Appl. Opt. 33, 6699-6710 (1994). [CrossRef] [PubMed]
  31. R. Berg, S. Andersson-Engels, O. Jarlman, and S. Svanberg, "Time-gated viewing studies on tissue-like phantoms," Appl. Opt. 35, 3432-3440 (1996). [CrossRef] [PubMed]
  32. L. Wang, X. Liang, P. A. Galland, P. P. Ho, and R. R. Alfano, "Detection of objects hidden in highly scattering media using time-gated imaging methods," in Optical Sensing, Imaging, and Manipulation for Biological and Biomedical Applications, R. Alfano, P. Ho, and A. Chiou, eds., Proc. SPIE 4082, 261-264 (2000). [CrossRef]
  33. D. K. Rao, H. S. Patel, B. Jain, and P. K. Gupta, "Time-gated optical imaging through turbid media using stimulated Raman scattering: studies on image contrast," Pramana J. Phys. 64, 229-238 (2005). [CrossRef]
  34. D. J. Hall, J. C. Hebden, and D. T. Deply, "Imaging very-low-contrast objects in breastlike scattering media with a time-resolved method," Appl. Opt. 36, 7270-7276 (1997). [CrossRef]
  35. J. C. Hebden, "Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses," Opt. Laser Technol. 27, 263-268 (1995). [CrossRef]
  36. M. Q. Brewster and Y. Yamada, "Optical properties of thick, turbid media from picosecond time-resolved light scattering measurements," Int. J. Heat Mass Transfer 38, 2569-2581 (1995). [CrossRef]
  37. W. Becker, A. Bergmann, H. Wabnitz, D. Grosenick, and A. Liebert, "High count rate multichannel TCSPC for optical tomography," in Photon Migration, Optical Coherence, Tomography, and Microscopy, S. Andersson-Engels and M. Kaschke, eds., Proc. SPIE 4431, 249-254 (2001). [CrossRef]
  38. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. A. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2001). [CrossRef] [PubMed]
  39. C. D'Andrea, D. Comelli, A. Pifferi, A. Toricelli, G. Valentini, and R. Cubeddu, "Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera," J. Phys. D 36, 1675-1681 (2003). [CrossRef]
  40. C. Das, A. Trivedi, K. Mitra, and T. Vo-Dinh, "Experimental and numerical analysis of short-pulse laser interaction with tissue phantoms containing inhomogeneities," Appl. Opt. 42, 5173-5180 (2003). [CrossRef] [PubMed]
  41. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989). [CrossRef] [PubMed]
  42. A. Ishimaru, Y. Kuga, R. L. T. Cheung, and K. Shimizu, "Scattering and diffusion of a beam wave in randomly distributed scatterers," J. Opt. Soc. Am. 73, 131-136 (1983). [CrossRef]
  43. A. H. Heelscher, S. L. Jacques, L. Wang, and F. K. Tittel, "Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues," Phys. Med. Biol. 40, 1957-1975 (1995). [CrossRef]
  44. B. Chen, K. Stamnes, and J. J. Stamnes, "Validity of the diffusion approximation in bio-optical imaging," Appl. Opt. 40, 6356-6366 (2001). [CrossRef]
  45. K. Mitra and S. Kumar, "Development and comparison of models for light pulse transport through scattering absorbing media," Appl. Opt. 38, 188-196 (1999). [CrossRef]
  46. M. Sakami, K. Mitra, and P. Hsu, "Analysis of light-pulse transport through two-dimensional scattering-absorbing media," J. Quant. Spectrosc. Radiat. Transf. 73, 169-179 (2002). [CrossRef]
  47. Z. Guo and S. Kumar, "Discrete-ordinates solution of short-pulsed laser transport in two-dimensional turbid media," Appl. Opt. 40, 3156-3163 (2001). [CrossRef]
  48. A. Sawetprawichkul, P. Hsu, K. Mitra, and M. Sakami, "A Monte Carlo study of the transient radiative transfer within the one-dimensional multi-layered slab," presented at the ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida, 5-10 November 2000.
  49. A. Sawetprawichkul, P. Hsu, and K. Mitra, "Parallel computing of three-dimensional Monte Carlo simulation of transient radiative transfer in participating media," presented at the 8th AIAA-ASME Thermophysics and Heat Transfer Conference, St. Louis, Missouri, June 2002.
  50. X. Lu and P. F. Hsu, "Reverse Monte Carlo simulations of light pulse propagation in nonhomogeneous media," J. Quant. Spectrosc. Radiat. Transf. 93, 349-368 (2005). [CrossRef]
  51. C. Y. Wu and S. H. Wu, "Integral equation formulation for transient radiative transfer in an anisotropically scattering medium," Int. J. Heat Mass Transfer 43, 2009-2020 (2000). [CrossRef]
  52. Z. M. Tan and P. F. Hsu, "An integral formulation of transient radiative transfer," ASME J. Heat Transfer 123, 466-475 (2001). [CrossRef]
  53. Z. Guo and S. Kumar, "Radiation element method for transient hyperbolic radiative transfer in plane-parallel in homogenous media," Numer. Heat Transfer , Part B 39, 371-387 (2001). [CrossRef]
  54. P. Rath, S. C. Mishra, P. Mahanta, U. K. Saha, and K. Mitra, "Discrete transfer method applied to transient radiative transfer problems in participating medium," Num. Heat Transfer , Part A 44, 183-197 (2003). [CrossRef]
  55. S. Arride, J. Hebden, M. Schweiger, F. Schmidt, M. Fry, E. Hillman, H. Dehghani, and D. T. Delpy, "A method for three-dimensional time-resolved optical tomography," Int. J. Imaging Sys. Technol. 11, 2-11 (2000). [CrossRef]
  56. J. M. Tualle, E. Tinet, and S. Avrillier, "New and easy way to perform time-resolved measurements of the light scattered by a turbid medium," Opt. Commun. 189, 211-220 (2001). [CrossRef]
  57. Z. Guo, J. Aber, B. A. Garetz, and S. Kumar, "Monte Carlo simulation and experiments of pulsed radiative transfer," J. Quant. Spectrosc. Radiat. Transf. 73, 159-168 (2002). [CrossRef]
  58. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Imaging of optical inhomogeneities in highly diffusive media: discrimination between scattering and absorption contribution," Appl. Phys. Lett. 69, 4162-4164 (1996). [CrossRef]
  59. A. A. Lacy, T. Collier, J. E. Price, S. Dharmawardhane, and R. Richards-Kortum, "Near real-time in vivo confocal imaging of mouse mammary tumors," Front. Biosci. 7, 137-145 (2002). [CrossRef]
  60. P. D. Acton and H. F. Kung, "Small animal imaging with high resolution single photon emission tomography," Nucl. Med. Biol. 30, 889-895 (2003). [CrossRef] [PubMed]
  61. M. R. Rajeswari, A. Jain, A. Sharma, D. Singh, N. R. Jagannathan, U. Sharma, and M. N. Degaonkar, "Evaluation of skin tumors by magnetic resonance imaging," Lab. Invest. 83, 1279-1283 (2003). [CrossRef] [PubMed]
  62. J. Masciotti, G. Abdoulaev, J. Hur, J. Papa, J. Bae, J. Huang, D. Yamashiro, J. Kandel, and A. H. Hielscher, "Combined optical tomographic and magnetic resonance imaging of tumor bearing mice," in Optical Tomography and Spectroscopy of Tissue VI, B. Chance, R. Alfano, B. Tromberg, M. Tamura, and E. Sevick-Muraca, eds., Proc. SPIE 5693, 74-81 (2005).
  63. N. Ramanujam, J. Chen, K. Gossage, R. Richards-Kortum, and B. Chance, "Fast and noninvasive fluorescence imaging of biologic tissues in vivo using a flying-spot scanner," IEEE Trans. Biomed. Eng. 48, 1034-1041 (2001). [CrossRef] [PubMed]
  64. M. Firbank and D. T. Delpy, "Design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993). [CrossRef]
  65. A. J. Welch and M. J. C. Van Gemert, eds., Optical Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).
  66. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  67. A. M. K. Nilsson, R. Berg, and S. Andersson-Engels, "Measurements of optical properties of tissue in conjunction with photodynamic therapy," Appl. Opt. 34, 4609-4619 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited