OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 24 — Aug. 20, 2006
  • pp: 6292–6300

Modeling low-coherence enhanced backscattering using Monte Carlo simulation

Hariharan Subramanian, Prabhakar Pradhan, Young L. Kim, Yang Liu, Xu Li, and Vadim Backman  »View Author Affiliations


Applied Optics, Vol. 45, Issue 24, pp. 6292-6300 (2006)
http://dx.doi.org/10.1364/AO.45.006292


View Full Text Article

Enhanced HTML    Acrobat PDF (1386 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Constructive interference between coherent waves traveling time-reversed paths in a random medium gives rise to the enhancement of light scattering observed in directions close to backscattering. This phenomenon is known as enhanced backscattering (EBS). According to diffusion theory, the angular width of an EBS cone is proportional to the ratio of the wavelength of light λ to the transport mean-free-path length l s * of a random medium. In biological media a large l s * 0.5 2   mm   λ results in an extremely small ( 0.001 ° ) angular width of the EBS cone, making the experimental observation of such narrow peaks difficult. Recently, the feasibility of observing EBS under low spatial coherence illumination (spatial coherence length L sc l s * ) was demonstrated. Low spatial coherence behaves as a spatial filter rejecting longer path lengths and thus resulting in an increase of more than 100 times in the angular width of low coherence EBS (LEBS) cones. However, a conventional diffusion approximation-based model of EBS has not been able to explain such a dramatic increase in LEBS width. We present a photon random walk model of LEBS by using Monte Carlo simulation to elucidate the mechanism accounting for the unprecedented broadening of the LEBS peaks. Typically, the exit angles of the scattered photons are not considered in modeling EBS in the diffusion regime. We show that small exit angles are highly sensitive to low-order scattering, which is crucial for accurate modeling of LEBS. Our results show that the predictions of the model are in excellent agreement with the experimental data.

© 2006 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(290.1350) Scattering : Backscattering
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering

History
Original Manuscript: August 25, 2005
Revised Manuscript: December 15, 2005
Manuscript Accepted: March 28, 2006

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Hariharan Subramanian, Prabhakar Pradhan, Young L. Kim, Yang Liu, Xu Li, and Vadim Backman, "Modeling low-coherence enhanced backscattering using Monte Carlo simulation," Appl. Opt. 45, 6292-6300 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-24-6292


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Kuga and A. Ishimaru, "Retroreflectance from a dense distribution of spherical particles," J. Opt. Soc. Am. A 1, 831-835 (1984). [CrossRef]
  2. M. B. van der Mark, M. P. van Albada, and A. Lagendijk, "Light scattering in strongly scattering media: multiple scattering and weak localization," Phys. Rev. B 37, 3575-3592 (1988). [CrossRef]
  3. P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, "Optical coherent backscattering by random media: an experimental study," J. Phys. (Paris) 49, 63-75 (1988). [CrossRef]
  4. R. Lenke and G. Maret, "Magnetic field effects on coherent backscattering of light," Eur. Phys. J. B 17, 171-185 (2000). [CrossRef]
  5. M. Tomita and H. Ikari, "Influence of finite coherence length of incoming light on enhanced backscattering," Phys. Rev. B 43, 3716-3719 (1991). [CrossRef]
  6. A. Wax, S. Bali, and J. E. Thomas, "Time-resolved phase-space distributions for light backscattered from a disordered medium," Phys. Rev. Lett. 85, 66-69 (2000). [CrossRef] [PubMed]
  7. A. Dogariu, J. Uozumi, and T. Asakura, "Enhancement of the backscattered intensity from fractal aggregates," Waves Random Media 2, 259-263 (1992). [CrossRef]
  8. G. Labeyrie, F. de Tomasi, J. C. Bernard, C. A. Muller, C. Miniatura, and R. Kaiser, "Coherent backscattering of light by cold atoms," Phys. Rev. Lett. 83, 5266-5269 (1999). [CrossRef]
  9. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, "Coherent backscattering of light from amplifying random media," Phys. Rev. Lett. 75, 1739-1742 (1995). [CrossRef] [PubMed]
  10. G. Yoon, D. N. G. Roy, and R. C. Straight, "Coherent backscattering in biological media: measurement and estimation of optical properties," Appl. Opt. 32, 580-585 (1993). [CrossRef] [PubMed]
  11. S. Eternad, R. Thompson, and M. J. Andrejco, "Weak localization of photons: termination of coherent random walks by absorption and confined geometry," Phys. Rev. Lett. 59, 1420-1423 (1987). [CrossRef]
  12. R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, "Anisotropic weak localization of light," Phys. Rev. Lett. 92, 033903 (2004). [CrossRef] [PubMed]
  13. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron. 9, 243-256 (2003). [CrossRef]
  14. K. Sokolov, R. A. Drezek, K. Gossage, and R. R. Richards-Kortum, "Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology?" Opt. Express 5, 302-317 (1999). [CrossRef] [PubMed]
  15. A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, "Cellular organization and substructure measured using angle-resolved low-coherence interferometry," Biophys. J. 82, 2256-2264 (2002). [CrossRef] [PubMed]
  16. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, "Spectroscopic diagnosis of bladder cancer with elastic light scattering," Lasers Surg. Med. 17, 350-357 (1995). [CrossRef] [PubMed]
  17. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapzhay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature 406, 35-36 (2000). [CrossRef] [PubMed]
  18. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002). [CrossRef] [PubMed]
  19. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998). [CrossRef]
  20. Q. Liu and N. Ramanujam, "Experimental proof of the feasibility of using angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media," Opt. Lett. 29, 2034-2036 (2004). [CrossRef] [PubMed]
  21. K. M. Yoo, G. C. Tang, and R. R. Alfano, "Coherent backscattering of light from biological tissues," Appl. Opt. 29, 3237-3239 (1990). [CrossRef] [PubMed]
  22. K. M. Yoo, F. Liu, and R. R. Alfano, "Biological materials probed by the temporal and angular profiles of the backscattered ultrafast laser pulses," J. Opt. Soc. Am. B 7, 1685-1693 (1990). [CrossRef]
  23. Y. L. Kim, Y. Liu, V. M. Turzhitsky, H. K. Roy, R. K. Wali, and V. Backman, "Coherent backscattering spectroscopy," Opt. Lett. 29, 1906-1908 (2004). [CrossRef] [PubMed]
  24. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, and V. Backman, "Low-coherent backscattering spectroscopy for tissue characterization," Appl. Opt. 44, 366-377 (2005). [CrossRef] [PubMed]
  25. Y. L. Kim, Y. Liu, V. M. Turzhitsky, R. Wali, H. Roy, and V. Backman, "Depth-resolved low-coherent backscattering in tissue," Opt. Lett. 30, 741-743 (2005). [CrossRef] [PubMed]
  26. B. C. Wilson and G. Adam, "A Monte Carlo model for the absorption and flux distributions of light in tissue," Med. Phys. 10, 824-830 (1983). [CrossRef] [PubMed]
  27. L. H. Wang, W. R. Chen, and R. E. Nordquist, "Optimal beam size for light delivery to absorption-enhanced tumors buried in biological tissues and effect of multiple beam delivery: a Monte Carlo study," Appl. Opt. 36, 8286-8291 (1997). [CrossRef]
  28. G. Labeyrie, D. Delande, C. A. Muller, C. Miniatura, and R. Kaiser, "Coherent backscattering of light by an inhomogeneous cloud of cold atoms," Phys. Rev. A 67, 033814 (2003). [CrossRef]
  29. V. L. Kuzmin and I. V. Meglinski, "Coherent multiple scattering effects and Monte Carlo method," JETP Lett. 79, 109-112 (2004). [CrossRef]
  30. R. Lenke, R. Tweer, and G. Maret, "Coherent backscattering of turbid samples containing large Mie spheres," J. Opt. A , Pure Appl. Opt. 4, 293-298 (2002). [CrossRef]
  31. M. H. Eddowes, T. N. Mills, and D. T. Delpy, "Monte-Carlo simulations of coherent backscatter for identification of the optical coefficients of biological tissue in vivo," Appl. Opt. 34, 2261-2267 (1995). [CrossRef] [PubMed]
  32. E. Berrocal, D. Y. Churmakov, V. P. Romanov, M. C. Jermy, and I. V. Meglinski, "Crossed source-detector geometry for a novel spary diagnostic: Monte Carlo simulation and analytical results," Appl. Opt. 44, 2519-2529 (2005). [CrossRef] [PubMed]
  33. R. Lenke and G. Maret, Multiple Scattering of Light: Coherent Backscattering and Transmission, Scattering in Polymeric and Colloidal Systems, W. Brown and K. Mortensen, eds. (London, Gordon and Breach, 2000), pp. 1-73.
  34. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge U. Press, 1999), pp. 572-580.
  35. L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML--Monte Carlo modeling of photon transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  36. S. P. Lin, L. H. Wang, S. L. Jacques, and F. K. Tittel, "Measurement of tissue optical properties using oblique incidence optical fiber reflectometry," Appl. Opt. 36, 136-143 (1997). [CrossRef] [PubMed]
  37. L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941). [CrossRef]
  38. J. S. Hendricks and T. E. Booth, "MCNP variance reduction overview," Lect. Notes Phys. 240, 83-92 (1985). [CrossRef]
  39. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), pp. 351-352.
  40. E. Akkermans, P. E. Wolf, and R. Maynard, "Coherent backscattering of light by disordered media: analysis of peak line shape," Phys. Rev. Lett. 56, 1471-1474 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited