OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 25 — Sep. 1, 2006
  • pp: 6358–6366

Multiscale free-space optical interconnects for intrachip global communication: motivation, analysis, and experimental validation

Michael J. McFadden, Muzammil Iqbal, Thomas Dillon, Rohit Nair, Tian Gu, Dennis W. Prather, and Michael W. Haney  »View Author Affiliations

Applied Optics, Vol. 45, Issue 25, pp. 6358-6366 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1143 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The use of optical interconnects for communication between points on a microchip is motivated by system-level interconnect modeling showing the saturation of metal wire capacity at the global layer. Free-space optical solutions are analyzed for intrachip communication at the global layer. A multiscale solution comprising microlenses, etched compound slope microprisms, and a curved mirror is shown to outperform a single-scale alternative. Microprisms are designed and fabricated and inserted into an optical setup apparatus to experimentally validate the concept. The multiscale free-space system is shown to have the potential to provide the bandwidth density and configuration flexibility required for global communication in future generations of microchips.

© 2006 Optical Society of America

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(220.4000) Optical design and fabrication : Microstructure fabrication
(220.4830) Optical design and fabrication : Systems design

Original Manuscript: December 1, 2005
Revised Manuscript: May 1, 2006
Manuscript Accepted: May 21, 2006

Michael J. McFadden, Muzammil Iqbal, Thomas Dillon, Rohit Nair, Tian Gu, Dennis W. Prather, and Michael W. Haney, "Multiscale free-space optical interconnects for intrachip global communication: motivation, analysis, and experimental validation," Appl. Opt. 45, 6358-6366 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. E. Moore, "Cramming more components onto integrated circuits," Fairchild Semiconductors' Electronics 38, 114-117 (1965).
  2. M. W. Haney, M. J. McFadden, and M. Iqbal, "An arbitrarily configurable optical interconnect fabric for intra-chip global communication," in Proceedings of OSA Optics in Computing (Optical Society of America, 2003).
  3. International Technology Roadmap for Semiconductors, 2001, 2003, and 2004 eds. (Sematech, Inc., 2004).
  4. M. Iqbal, M. J. McFadden, and M. W. Haney, "Intrachip global interconnects and the saturation of Moore's law," in Proceedings of IEEE-LEOS Summer Topical: Optical Interconnects and VLSI Photonics (IEEE, 2004). [CrossRef]
  5. M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, and F. Kiamilev, "Description and evaluation of the FAST-net smart pixel-based optical interconnection prototype," Proc. IEEE 88, 819-828 (1996). [CrossRef]
  6. D. Neilson, R. Frahm, P. Kolodner, C. Bolle, R. Ryf, J. Kim, A. Papazian, C. Nuzman, A. Gasparyan, N. Basavanhally, V. Aksyuk, and J. Gates, "256 × 256 port optical cross-connect subsystem," J. Lightwave Technol. 22, 1499-1509 (2004). [CrossRef]
  7. K. Monnig, "The coming "red brick walls" in the ITRS interconnect roadmap," in Proceedings of IEEE-LEOS Summer Topical: Optical Interconnects and VLSI Photonics (IEEE, 2004).
  8. V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, "Clock rate versus IPC: the end of the road of conventional microarchitectures," in Proceedings of the 27th ACM Annual International Symposium on Computer Architecture (2000).
  9. D. A. B. Miller, "Rationale and challenges for optical interconnects to silicon chips," Proc. IEEE 88, 728-749 (2000). [CrossRef]
  10. D. Sylvester and K. Keutzer, "Getting to the bottom of deep submicron II: a global wiring paradigm," in Proceedings of the International Symposium on Physical Design (1999).
  11. M. Lung Mui and K. Banerjee, "A global interconnect optimization scheme for nanometer scale VLSI with implications for latency, bandwidth, and power dissipation," IEEE Trans. Electron Devices 51, 195-203 (2004). [CrossRef]
  12. B. S. Landman and R. L. Russo, "On a pin versus block relationship for partitions of logic graphs," IEEE Trans. Comput. C-20, 1496-1479 (1971). [CrossRef]
  13. W. E. Donath, "Wire length distribution for placements of computer logic," IBM J. Res. Dev. 25, 152-155 (1981). [CrossRef]
  14. P. Chiristie and D. Stroobandt, "The interpretation and application of Rent's rule," IEEE Trans. Very Large Scale Integr. (VSLI) Syst., 8, 639-648 (2000). [CrossRef]
  15. D. Stroobandt, A Priori Wire Length Estimation for Digital Design (Kluwer, 2001). [CrossRef]
  16. M. Iqbal, M. J. McFadden, and M. W. Haney are preparing a manuscript with the title "Interconnect prediction for performance evaluation of intrachip global communication".
  17. N. Vasseghi, K. Yeager, E. Sarto, and M. Seddighnezhad, "A 200 Mhz superscaler RISC microprocessor," IEEE J. Solid-State Circuits 31, 1675-1686 (1996). [CrossRef]
  18. E. Cassan, S. Laval, S. Lardenois, and A. Koster, "On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides," IEEE J. Sel. Top. Quantum Electron. 9, 460-464 (2003). [CrossRef]
  19. M. J. McFadden, M. Iqbal, and M. W. Haney, "Multi-scale optical interconnects for intrachip global communication," in Proceedings of IEEE-LEOS Summer Topical: Optical Interconnects and VLSI Photonics (IEEE, 2004), pp. 71-72. [CrossRef]
  20. S. A. Self, "Focusing of spherical Gaussian beams," Appl. Opt. 22, 658-661 (1983). [CrossRef] [PubMed]
  21. C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, "Low-cost micro-optical modules for MCM level optical interconnects," IEEE J. Sel. Top. Quantum Electron. 9, 518-530 (2003). [CrossRef]
  22. S. P. Levitan, T. P. Kurzweg, P. J. Marchand, M. A. Rempel, D. M. Chiarulli, J. A. Martinez, J. M. Bridgen, C. Fan, and F. B. McCormick, "Chatoyant: a computer-aided-design tool for free-space optoelectronic systems," Appl. Opt. 37, 6078-6092 (1998). [CrossRef]
  23. C. Gimkiewicz, D. Hagedorn, J. Jahns, E.-B. Kley, and F. Thoma, "Fabrication of microprisms for planar optical interconnections by use of analog gray-scale lithography with high-energy-beam-sensitive glass," Appl. Opt. 38, 2986-2990 (1999). [CrossRef]
  24. HEBS Glass is a product of Canyon Materials, Incorporated, 6665 Nancy Ridge Drive, San Diego, Calif. 92121.
  25. OSLO is a product of Lambda Research Corporation, 25 Porter Road, Littleton, Mass. 01460-1434.
  26. M. J. McFadden, "Multi-scale free-space optical interconnects for intrachip global communication," Ph.D. dissertation (University of Delaware, 2005).
  27. T. Dillon, A. Balcha, J. Murakowiski, and D. Prather, "Continuous-tone grayscale mask fabrication using high-energy-beam-sensitive glass," J. Microlithogr. Microfabr. Microsyst. 3, 550-554 (2004). [CrossRef]
  28. M. Iqbal, T. Dillon, M. J. McFadden, D. Prather, and M. W. Haney, "Fabrication of beam steering elements, couplers and lenses with grayscale lithography using HEBS glass," in Proceedings of 89th OSA Annual Meeting (Optical Society of America, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited