OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 25 — Sep. 1, 2006
  • pp: 6393–6408

Broadband radio-frequency spectrum analysis in spectral-hole-burning media

Max Colice, Friso Schlottau, and Kelvin H. Wagner  »View Author Affiliations

Applied Optics, Vol. 45, Issue 25, pp. 6393-6408 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1202 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a 20   GHz spectrum analyzer with 1   MHz resolution and > 40   dB dynamic range using spectral-hole-burning (SHB) crystals, which are cryogenically cooled crystal hosts lightly doped with rare-earth ions. We modulate a rf signal onto an optical carrier using an electro-optic intensity modulator to produce a signal beam modulated with upper and lower rf sidebands. Illuminating SHB crystals with modulated beams excites only those ions resonant with corresponding modulation frequencies, leaving holes in the crystal's absorption profile that mimic the modulation power spectrum and persist for up to 10   ms . We determine the spectral hole locations by probing the crystal with a chirped laser and detecting the transmitted intensity. The transmitted intensity is a blurred-out copy of the power spectrum of the original illumination as mapped into a time-varying signal. Scaling the time series associated with the transmitted intensity by the instantaneous chirp rate yields the modulated beam's rf power spectrum. The homogeneous linewidth of the rare-earth ions, which can be < 100   kHz at cryogenic temperatures, limits the fundamental spectral resolution, while the medium's inhomogeneous linewidth, which can be > 20   GHz , determines the spectral bandwidth.

© 2006 Optical Society of America

OCIS Codes
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(160.5690) Materials : Rare-earth-doped materials

Original Manuscript: December 5, 2005
Manuscript Accepted: April 17, 2006

Max Colice, Friso Schlottau, and Kelvin H. Wagner, "Broadband radio-frequency spectrum analysis in spectral-hole-burning media," Appl. Opt. 45, 6393-6408 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Engelson, Modern Spectrum Analyzer Theory and Applications (Artech House, 1984).
  2. Spectrum Analysis Basics, Application Note 150 (Agilent, 2004), www.agilent.com.
  3. Fundamentals of Real-Time Spectrum Analysis, Primer, Tektronix (2004), www.tektronix.com.
  4. J. L. Anderson, H. B. Brown, and B. V. Markevitch, "Wideband real-time Fourier analyzer using folded spectrum techniques," in Real-Time Signal Processing II, T. F. Tao, ed., Proc. SPIE 180, 146-152 (1979).
  5. T. Turpin, "Spectrum analysis using optical processing," Proc. IEEE 69, 80-92 (1981).
  6. Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare-earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002). [CrossRef]
  7. R. M. Macfarlane, "Direct process thermal line broadening in Tm:YAG," J. Lumin. 85, 181-186 (2000). [CrossRef]
  8. T. W. Mossberg, "Time-domain frequency-selective optical data storage," Opt. Lett. 7, 77-79 (1982).
  9. Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, "Real-time optical waveform convolver/cross correlator," Appl. Phys. Lett. 45, 714-716 (1984). [CrossRef]
  10. K. D. Merkel, Z. Cole, and W. R. Babbitt, "Signal correlator with programmable variable time delay based on optical coherent transients," J. Lumin. 86, 375-382 (2000). [CrossRef]
  11. F. Schlottau and K. H. Wagner, "Demonstration of a continuous scanner and time-integrating correlator using spatial-spectral holography," J. Lumin. 107, 90-102 (2004). [CrossRef]
  12. K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, "Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG," J. Lumin. 107, 62-74 (2004). [CrossRef]
  13. M. Tian, R. Reibel, and W. R. Babbitt, "Demonstration of optical coherent transient true-time delay at 4 Gbits/s," Opt. Lett. 26, 1143-1145 (2001).
  14. V. Lavielle, F. D. Seze, I. Lorgeré, and J.-L. Le Gouët, "Wideband radio frequency spectrum analyzer: improved design and experimental results," J. Lumin. 107, 75-89 (2004). [CrossRef]
  15. R. K. Mohan, Z. Cole, R. R. Reibel, T. Chang, K. D. Merkel, W. R. Babbitt, M. Colice, F. Schlottau, and K. H. Wagner, "Microwave spectral analysis using optical spectral holeburning," in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 24-27.
  16. M. Colice, F. Schlottau, K. Wagner, R. K. Mohan, W. R. Babbitt, I. Lorgeré, and J.-L. Le Gouët, "RF Spectrum Analysis in Spectral Hole Burning Media," in Optical Information Systems II, B. Javidi and D. Psaltis, eds., Proc. SPIE 5557, 132-139 (2004). [CrossRef]
  17. I. Lorgeré, L. Ménager, V. Lavielle, J.-L. Le Gouët, D. Dolfi, S. Tonda, and J.-P. Huignard, "Demonstration of a radio-frequency spectrum analyser based on spectral hole burning," J. Mod. Opt. 49, 2459-2475 (2002). [CrossRef]
  18. M. Mitsunaga and R. G. Brewer, "Generalized perturbation theory of coherent optical emission," Phys. Rev. A 32, 1605-1613 (1985). [CrossRef]
  19. V. Crozatier, V. Lavielle, F. Bretenaker, J. Le Gouët, and I. Lorgeré, "High-resolution radio frequency spectral analysis with photon echo chirp transform in an Er:YSO crystal," IEEE J. Quantum Electron. 40, 1450-1457 (2004). [CrossRef]
  20. G. Gorju, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "10-GHz bandwidth rf spectral Analyzer with MHz resolution based on spectral hole burning in Tm3+:YAG," IEEE Photon. Technol. Lett. 17, 2385-2387 (2005). [CrossRef]
  21. F. Schlottau, M. Colice, K. H. Wagner, and W. R. Babbitt, "Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis," Opt. Lett. 30, 3003-3005 (2005). [CrossRef]
  22. D. T. Chen, H. R. Fetterman, A. T. Chen, W. H. Steier, L. R. Dalton, W. S. Wang, and Y. Q. Shi, "Demonstration of 110 GHz electro-optic polymer modulators," Appl. Phys. Lett. 70, 3335-3337 (1997). [CrossRef]
  23. K. Noguchi, H. Miyazawa, and O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator," Electron. Lett. 34, 661-663 (1998). [CrossRef]
  24. M. Colice, F. Schlottau, and K. Wagner, "Ultrawideband, wide-open rf spectrum analysis using spectral hole burning," in Microwave Photonics, J. Yao, ed., Proc. SPIE 5971, 564-573 (2005).
  25. P. Meystre and M. Sargent III, Elements of Quantum Optics, 2nd ed. (Springer-Verlag, 1991).
  26. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).
  27. A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, 1968).
  28. M. A. Poletti, "Linearly swept frequency measurements and the Wigner-Ville distribution," in Time-Frequency Signal Analysis: Methods and Applications, B.Boashash, ed., (Longman Chesire, 1992), Chap. 19, pp. 424-444.
  29. M. A. Poletti, "Linearly swept frequency measurements, time-delay spectrometry, and the Wigner distribution," J. Audio Eng. Soc. 36, 457-468 (1988).
  30. T. Chang, M. Tian, R. K. Mohan, C. Renner, K. D. Merkel, and W. R. Babbitt, "Recovery of spectral features readout with frequency chirped laser fields," Opt. Lett. 30, 1129-1131 (2005). [CrossRef]
  31. G. Hok, "Response of linear resonant systems to excitation of a frequency varying linearly with time," J. Appl. Phys. 19, 242-250 (1948). [CrossRef]
  32. W. R. Babbitt and R. Krishna Mohan, Spectrum Lab, Department of Physics, Montana State University, Bozeman, Montana 59717 (personal communication, 2005).
  33. J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, "Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts," Phys. Rev. Lett. 63, 78-81 (1989). [CrossRef]
  34. S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, "Intensity-dependent photon-echo relaxation in rare-earth-doped crystals," Phys. Rev. B 41, 11568-11571 (1990). [CrossRef]
  35. M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesegi, "Excitation-induced frequency shift probed by stimulated photon echoes," Phys. Rev. Lett. 68, 3216-3219 (1992). [CrossRef]
  36. G. K. Liu and R. L. Cone, "Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed in photon-echo experiments," Phys. Rev. B 41, 6193-6200 (1990). [CrossRef]
  37. G. W. Burr, T. L. Harris, W. R. Babbitt, and C. M. Jefferson, "Incorporating excitation-induced dephasing into the Maxwell-Bloch numerical modeling of photon echoes," J. Lumin. 107, 314-331 (2004). [CrossRef]
  38. T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, "Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration," Phys. Rev. B 73, 075101 (2006). [CrossRef]
  39. A. Szaabo and R. Kaarli, "Optical hole burning and spectral diffusion in ruby," Phys. Rev. B 44, 12307-12313 (1991). [CrossRef]
  40. G. Armagan, A. M. Buoncristiani, and B. D. Bartolo, "Excited state dynamics of thulium ions in yttrium aluminum garnets," Opt. Mater. 1, 11-20 (1992). [CrossRef]
  41. C. J. Karlsson and F. A. A. Olsson, "Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance," Appl. Opt. 38, 3376-3386 (1999).
  42. G. Gorju, V. Crozatier, V. Lavielle, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "Experimental investigation of deterministic and stochastic frequency noises of a rapidly frequency chirped laser," Eur. Phys. J. Appl. Phys. 30, 175-183 (2005). [CrossRef]
  43. N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, "Laser stabilization using regenerative spectral hole burning," Phys. Rev. B 62, 1473-1476 (2000). [CrossRef]
  44. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "Frequency modulation FM spectroscopy," Appl. Phys. B 32, 145-152 (1983). [CrossRef]
  45. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983). [CrossRef]
  46. K. S. Repasky and J. L. Carlsten, "Simple method for measuring frequency chirps with a Fabry-Perot interferometer," Appl. Opt. 39, 5500-5504 (2000).
  47. K. H. Wagner, F. Schlottau, and J. Bregman, "Array imaging using spatial-spectral holography," in Optics in Computing (International Commission on Optics, 2002).
  48. F. Schlottau, K. Wagner, J. Bregman, and J.-L. Le Gouët, "Sparse antenna array multiple beamforming and spectral analysis using spatial-spectral holography," in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 355-358. [CrossRef]
  49. F. Schlottau, B. Braker, and K. Wagner, "Squint compensation for a broadband RF array spectral imager using spatial spectral holography," in Imaging Spectrometry X, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5546, 244-252 (2004). [CrossRef]
  50. B. M. Braker, Y. Li, D. Gu, F. Schlottau, and K. H. Wagner, "Broadband microwave imaging with spectral hole burning for squint compensation," in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds., Proc. SPIE 5789, 69-79 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited