OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 25 — Sep. 1, 2006
  • pp: 6586–6590

F2-laser-machined submicrometer gratings in thin dielectric films for resonant grating waveguide applications

Mark Andreas Bader, Christoph Kappel, André Selle, Jürgen Ihlemann, Mi Li Ng, and Peter R. Herman  »View Author Affiliations

Applied Optics, Vol. 45, Issue 25, pp. 6586-6590 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (593 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface-relief gratings with submicrometer modulation periods were ablated by F2-laser radiation in thin metal-oxide films to produce resonant grating waveguide structures. For 150   nm films of Nb 2 O 5 , grating amplitudes in the range of 5– 50   nm could be reproducibly excised with a controlled exposure of a laser energy density and a number of pulses within a narrow processing window. Resonant coupling of 800   nm ultrashort pulsed laser light into the resulting grating waveguide structure is verified with reflection and transmission spectra and satisfactorily modeled by coupled-mode theory. The laser-fabricated grating waveguides are attractive for high damage threshold reflectors and biosensor applications.

© 2006 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.4000) Optical devices : Microstructure fabrication
(310.2790) Thin films : Guided waves
(350.3390) Other areas of optics : Laser materials processing

Original Manuscript: January 6, 2006
Revised Manuscript: April 13, 2006
Manuscript Accepted: April 13, 2006

Virtual Issues
Vol. 1, Iss. 10 Virtual Journal for Biomedical Optics

Mark Andreas Bader, Christoph Kappel, André Selle, Jürgen Ihlemann, Mi Li Ng, and Peter R. Herman, "F2-laser-machined submicrometer gratings in thin dielectric films for resonant grating waveguide applications," Appl. Opt. 45, 6586-6590 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. E. Dyer, R. J. Farley, R. Giedl, and D. M. Karnakis, "Excimer laser ablation of polymers and glasses for grating fabrication," Appl. Surf. Sci. 96-98, 537-549 (1996). [CrossRef]
  2. T. Lippert, T. Gerber, A. Wokaun, D. J. Funk, H. Fukumura, and M. Goto, "Single pulse nm-size grating formation in polymers using laser ablation with an irradiation wavelength of 355 nm," Appl. Phys. Lett. 75, 1018-1020 (1999). [CrossRef]
  3. S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, and J. S. Wilkinson, "Ablated gratings on borosilicate glass by 193-nm excimer laser radiation," Appl. Phys. A A69, S739-S741 (1999). [CrossRef]
  4. F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, "Submicron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation," Appl. Surf. Sci. 138-139, 107-110 (1999). [CrossRef]
  5. P. Simon and J. Ihlemann, "Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses," Appl. Phys. A 63, 505-508 (1996). [CrossRef]
  6. H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, and Z. Bor, "Sub-100 nm lines produced by direct laser ablation in polyimide," Appl. Phys. Lett. 58, 2761-2763 (1991). [CrossRef]
  7. P. R. Herman, K. Beckley, and R. A. Potyrailo, "Vacuum-ultraviolet holographic gratings etched by a single F2 laser pulse," in Conference on Lasers and Electro-Optics, Vol. 8 of the 1994 OSA Technical Digest Series (Optical Society of America, 1994), paper CFI2.
  8. R. Magnusson and S. S. Wang, "Transmission bandpass guided-mode resonance filters," Appl. Opt. 34, 8106-8109 (1995). [CrossRef] [PubMed]
  9. D. K. Jacob, S. C. Dunn, and M. G. Moharam, "Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams," J. Opt. Soc. Am. A 18, 2109-2120 (2001). [CrossRef]
  10. T. Katchalski, E. Teitelbaum, and A. A. Friesem, "Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures," Appl. Phys. Lett. 84, 472-474 (2004). [CrossRef]
  11. S. Pereira, J. E. Sipe, M. A. Bader, S. Soria, and G. Marowsky, "Loss-tolerant, narrow-band reflector in the UV using a grating-waveguide structure," Appl. Phys. B 75, 635-640 (2002). [CrossRef]
  12. D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003). [CrossRef] [PubMed]
  13. D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997). [CrossRef]
  14. J. Ihlemann, S. Müller, S. Puschmann, D. Schäfer, M. Wei, J. Li, and P. R. Herman, "Fabrication of submicron gratings in fused silica by F2-laser ablation," Appl. Phys. A 76, 751-753 (2003). [CrossRef]
  15. S. Pissadakis, M. N. Zervas, L. Reekie, and J. S. Wilkinson, "High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides," Appl. Phys. A 79, 1093-1096 (2004). [CrossRef]
  16. P. R. Herman, K. P. Chen, X. M. Wei, J. Zhang, J. Ihlemann, D. Schäfer, G. Marowsky, P. Oesterlin, and B. Burghardt, "F2 lasers: high-resolution optical processing system for shaping photonic components," in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. C. Gower, H. Helvajian, K. Sugioka, and J. J. Dubowski, eds., Proc. SPIE 4274, 149-157 (2001).
  17. M. Ghanashyam Krishna and A. K. Bhattacharya, "Thickness and oxygen pressure dependent optical properties of niobium oxide thin films," Int. J. Mod. Phys. B 13, 411-418 (1999). [CrossRef]
  18. P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, "Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers," Appl. Surf. Sci. 154-155, 577-586 (2000). [CrossRef]
  19. F. Weisbuch, V. N. Tokarev, S. Lazare, and D. Débarre, "Ablation with a single micropatterned KrF laser pulse: quantitative evidence of transient liquid microflow driven by the plume pressure gradient at the surface of polyesters," Appl. Phys. A 76, 613-620 (2003). [CrossRef]
  20. C. Kappel, A. Selle, M. A. Bader, and G. Marowsky, "Resonant double-grating waveguide structures as inverted Fabry-Perot interferometers," J. Opt. Soc. Am. B 21, 1127-1136 (2004). [CrossRef]
  21. A. Selle, C. Kappel, M. A. Bader, G. Marowsky, K. Winkler, and U. Alexiev, "Picosecond-pulse-induced two-photon fluorescence enhancement in biological material by application of grating waveguide structures," Opt. Lett. 30, 1683-1685 (2005). [CrossRef] [PubMed]
  22. D. K. Jacob, S. C. Dunn, and M. G. Moharam, "Design considerations for narrow-band dielectric resonant grating reflection filters of finite length," J. Opt. Soc. Am. A 17, 1241-1249 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited