OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 45, Iss. 26 — Sep. 10, 2006
  • pp: 6741–6745

Development of multilayer laminar-type diffraction gratings to achieve high diffraction efficiencies in the 1–8 keV energy region

Masahiko Ishino, Philip A. Heimann, Hiroyuki Sasai, Masatoshi Hatayama, Hisataka Takenaka, Kazuo Sano, Eric M. Gullikson, and Masato Koike  »View Author Affiliations

Applied Optics, Vol. 45, Issue 26, pp. 6741-6745 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (262 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



W∕C and Co / SiO 2 multilayer gratings have been fabricated by depositing a multilayer coating on the surface of laminar-type holographic master gratings. The diffraction efficiency was measured by reflectometers in the energy region of 0.6 8.0   keV at synchrotron radiation facilities as well as with an x-ray diffractometer at 8.05   keV . The Co / SiO 2 and W∕C multilayer gratings showed peak diffraction efficiencies of 0.47 and 0.38 at 6.0 and 8.0   keV , respectively. To our knowledge, the peak efficiency of the W∕C multilayer grating is the highest measured with hard x rays. The diffraction efficiency of the Co / SiO 2 multilayer gratings was higher than that of the W∕C multilayer grating in the energy range of 2.5 6.0   keV . However, it decreased significantly in the energy above the K absorption edge of Co ( 7.71   keV ) . For the Co / SiO 2 multilayer grating, the measured diffraction efficiencies agreed with the calculated curves assuming a rms roughness of 1   nm .

© 2006 Optical Society of America

OCIS Codes
(230.1950) Optical devices : Diffraction gratings
(230.4170) Optical devices : Multilayers
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)

Original Manuscript: February 16, 2006
Revised Manuscript: April 12, 2006
Manuscript Accepted: May 4, 2006

Masahiko Ishino, Philip A. Heimann, Hiroyuki Sasai, Masatoshi Hatayama, Hisataka Takenaka, Kazuo Sano, Eric M. Gullikson, and Masato Koike, "Development of multilayer laminar-type diffraction gratings to achieve high diffraction efficiencies in the 1-8 keV energy region," Appl. Opt. 45, 6741-6745 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. C. Koningsberger, X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, R. Prins, ed. (Wiley, 1988).
  2. F. Sette, S. J. Pearton, J. M. Poate, and J. E. Rowe, "Local structure of S impurities in GaAs," Phys. Rev. Lett. 56, 2637-2640 (1986). [CrossRef]
  3. J. C. Fuggle and J. E. Inglesfield, Unoccupied Electronic States: Fundamentals for XANES, EELS, IPS and BIS (Springer, 1992).
  4. P. A. Heimann, M. Koike, and H. A. Padmore, "Dispersive x-ray absorption spectroscopy with gratings above 2 keV," Rev. Sci. Instrum. 76, 063102 (2005). [CrossRef]
  5. T. W. Barbee, Jr., "Combined microstructure x-ray optics (invited)," Rev. Sci. Instrum. 60, 1588-1595 (1989). [CrossRef]
  6. J. C. Rife, T. W. Barbee, Jr., W. R. Hunter, and R. G. Cruddace, "Performance of a tungsten/carbon multilayer-coated, blazed grating from 150 to 1700 eV," Phys. Scr. 41, 418-521 (1990).
  7. E. Ishigro, T. Kawashima, K. Yamashita, H. Kunieda, T. Yamazaki, K. Sato, M. Koeda, T. Nagano, and K. Sano, "Multilayer coated laminar grating in the soft x-ray region," Rev. Sci. Instrum. 66, 2112-2115 (1995). [CrossRef]
  8. T. Yoshioka, K. Yamashita, H. Kunieda, K. Tamura, A. Furuzawa, M. Watanabe, and K. Haga, "Development of multilayer coated gratings for high energy x-ray spectroscopy," Astron. Nachr. 320, 384 (1999). [CrossRef]
  9. V. V. Martynov, H. A. Padmore, A. Yakshin, and Yu. A. Agafonov, "Lamellar multilayer gratings with very high diffraction efficiency," Proc. SPIE 3150, 2-8 (1997). [CrossRef]
  10. V. V. Martynov and Yu. Platonov, "Deep multilayer gratings with adjustable bandpass for spectroscopy and monochromatization," Rev. Sci. Instrum. 73, 1551-1553 (2002). [CrossRef]
  11. W. K. Warburton, "On the diffraction properties of multilayer coated plane gratings," Nucl. Instrum. Methods Phys. Res. A 291, 278-285 (1990). [CrossRef]
  12. I. McNulty, Y. P. Feng, S. P. Frigo, and T. M. Mooney, "Multilayer spherical grating monochromator for 1-4 keV x-rays," Proc. SPIE 3150, 195-204 (1997). [CrossRef]
  13. M. Koike, M. Ishino, and H. Sasai, "Design of a high efficiency grazing incidence monochromator with multilayer coated laminar gratings for the 1-6 keV region," Rev. Sci. Instrum. 77, 023101 (2006). [CrossRef]
  14. A. F. Jankowski, L. R. Schrawyer, M. A. Wall, W. W. Craig, R. I. Morales, and D. M. Makowiecki, "Interfacial bonding in W/C and W/B4C multilayers," J. Vac. Sci. Technol. A 7, 2914-2918 (1989). [CrossRef]
  15. A. F. Jankowski, L. R. Schrawyer, and M. A. Wall, "Structural stability of heat-treated W/C and W/B4C multilayers," J. Appl. Phys. 68, 5162-5168 (1990). [CrossRef]
  16. B. L. Henke, E. M. Gullikson, and J. C. Davis, "X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92," At. Data Nucl. Data Tables 54, 181-342 (1993). [CrossRef]
  17. P. Ruterana, P. Houdy, and P. Boher, "A transmission electron microscopy study of low-temperature reaction at the Co-Si interface," J. Appl. Phys. 68, 1033-1037 (1990). [CrossRef]
  18. H. Miura, E. Ma, and V. Thompson, "Initial sequence and kinetics of silicide formation in cobalt/amorphous-silicon multilayer films," J. Appl. Phys. 70, 4287-4294 (1991). [CrossRef]
  19. J. Y. Shim, S. W. Park, and H. K. Baik, "Silicide formation in cobalt/amorphous silicon, amorphous Co-Si and bias-induced Co-Si films," Thin Solid Films 292, 31-39 (1997). [CrossRef]
  20. J. M. Fallon, C. A. Faunce, and P. J. Grundy, "Microstructure of sputter-deposited Co/Si multilayer thin films," J. Appl. Phys. 88, 2400-2407 (2000). [CrossRef]
  21. M. Ishino, O. Yoda, H. Takenaka, K. Sano, and M. Koike, "Heat stability of Mo/Si multilayers inserted with compound layers," Surf. Coat. Technol. 169-170, 628-631 (2003). [CrossRef]
  22. M. Ishino and O. Yoda, "Optimization of the silicon oxide layer thicknesses inserted in the Mo/Si multilayer interfaces for high heat stability and high reflectivity," J. Appl. Phys. 92, 4952-4958 (2002). [CrossRef]
  23. P. A. Heimann, A. M. Lindenberg, I. Kang, S. Johnson, T. Missalla, Z. Chang, R. W. Falcone, R. W. Schoenlein, T. E. Glover, and H. A. Padmore, "Ultrafast x-ray diffraction of laser-irradiated crystals," Nucl. Instrum. Methods. Phys. Res. A 467-468, 986-989 (2001). [CrossRef]
  24. M. Koike, K. Sano, O. Yoda, Y. Harada, M. Ishino, N. Moriya, H. Sasai, H. Takenaka, E. Gullikson, S. Mrowka, M. Jinno, Y. Ueno, J. H. Underwood, and T. Namioka, "New evaluation beamline for soft x-ray optical elements," Rev. Sci. Instrum. 73, 1541-1544 (2002). [CrossRef]
  25. J. H. Underwood, E. M. Gullikson, M. Koike, and P. J. Batson, "Beamline for metrology of x-ray/EUV optics at the Advanced Light Source," Proc. SPIE 3113, 214-221 (1997). [CrossRef]
  26. GSOLVER V4.2b, Grating Solver Development Co., Allen, Texas.
  27. B. Pardo, J.-M. Andrè, and A. Summar, "Dynamical theory of diffraction at in-depth multilayered gratings," J. Opt. 22, 141-148 (1991). [CrossRef]
  28. M. Nevière, "Bragg-Fresnel multilayer gratings: electromagnetic theory," J. Opt. Soc. Am. A 11, 1835-1845 (1994).
  29. E. Spiller, Soft X-ray Optics (SPIE Press, 1994).
  30. K.-H. Hellwege, "Über rasterförmige Reflexionsgitter," Z. Phys. 106, 588-596 (1937). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited