OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 45, Iss. 26 — Sep. 10, 2006
  • pp: 6775–6780

Mode coupling in strained and unstrained step-index plastic optical fibers

Svetislav Savović and Alexandar Djordjevich  »View Author Affiliations

Applied Optics, Vol. 45, Issue 26, pp. 6775-6780 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using the power-flow equation, we have examined the state of mode coupling in strained and unstrained step-index plastic optical fibers. The strained fibers show much stronger mode coupling than unstrained fibers of the same types. As a result, the coupling lengths where equilibrium mode distribution is achieved and the lengths of fiber required for achieving a steady-state mode distribution for strained fibers are much shorter than the corresponding lengths for unstrained fibers.

© 2006 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

Original Manuscript: March 30, 2006
Manuscript Accepted: April 28, 2006

Svetislav Savović and Alexandar Djordjevich, "Mode coupling in strained and unstrained step-index plastic optical fibers," Appl. Opt. 45, 6775-6780 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Ishigure, M. Kano, and Y. Koike, "Which is a more serious factor to the bandwidth of GI POF: differential mode attenuation or mode coupling?" J. Lightwave Technol. 18, 959-965 (2000). [CrossRef]
  2. S. E. Golowich, W. White, W. A. Reed, and E. Knudsen, "Quantitative estimates of mode coupling and differential modal attenuation in perfluorinated graded-index plastic optical fiber," J. Lightwave Technol. 21, 111-121 (2003). [CrossRef]
  3. D. Hanson, "Wiring with plastic," IEEE Lightwave Commun. Syst. 3, 34-39 (1992).
  4. P. E. Green, Jr., "Optical networking update," IEEE J. Sel. Areas Commun. 14, 764-779 (1996). [CrossRef]
  5. C. Koeppen, R. F. Shi, W. D. Chen, and A. F. Garito, "Properties of plastic optical fibers," J. Opt. Soc. Am. B 15, 727-739 (1998).
  6. J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, "Light power behavior when bending plastic optical fibers," IEE Proc. J: Optoelectron. 145, 313-318 (1998). [CrossRef]
  7. M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, and J. Zubía, "Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers," J. Lightwave Technol. 20, 1160-1164 (2002). [CrossRef]
  8. M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004). [CrossRef]
  9. A. Appajaiah and L. Jankowski, "A review on aging or degradation of polymer optical fibers: polymer chemistry and mathematical approach," in Tenth International Conference on Plastic Optical Fibers and Applications (The International Cooperative of Plastic Optic Fibres, 2001), pp. 317-324.
  10. A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998). [CrossRef]
  11. M. Eve and J. H. Hannay, "Ray theory and random mode coupling in an optical fibre waveguide, I," Opt. Quantum Electron. 8, 503-508 (1976). [CrossRef]
  12. D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).
  13. W. A. Gambling, D. N. Payne, and H. Matsumura, "Mode conversion coefficients in optical fibers," Appl. Opt. 14, 1538-1542 (1975).
  14. M. Rousseau and L. Jeunhomme, "Numerical solution of the coupled-power equation in step index optical fibers," IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977). [CrossRef]
  15. J. Dugas and G. Maurel, "Mode-coupling processes in polymethyl methacrylate-core optical fibers," Appl. Opt. 31, 5069-5079 (1992).
  16. A. Djordjevich and S. Savović, "Investigation of mode coupling in step index plastic optical fibers using the power flow equation," IEEE Photon. Technol. Lett. 12, 1489-1491 (2000). [CrossRef]
  17. S. Savović and A. Djordjevich, "Optical power flow in plastic clad silica fibers," Appl. Opt. 41, 7588-7591 (2002).
  18. J. Zubía, G. Durana, G. Aldabaldetreku, J. Arrúe, M. A. Losada, and M. López-Higuera, "New method to calculate mode conversion coefficients in SI multimode optical fibers," J. Lightwave Technol. 21, 776-781 (2003). [CrossRef]
  19. A. Djordjevich and S. Savović, "Numerical solution of the power flow equation in step-index plastic optical fibers," J. Opt. Soc. Am. B 21, 1437-1442 (2004). [CrossRef]
  20. S. Savović and A. Djordjevich, "Influence of numerical aperture on mode coupling in step-index plastic optical fibers," Appl. Opt. 43, 5542-5546 (2004). [CrossRef]
  21. S. Savović and A. Djordjevich, "Solution of mode coupling in step-index optical fibers by the Fokker-Planck equation and the Langevin equation," Appl. Opt. 41, 2826-2830 (2002).
  22. L. Jeunhomme, M. Fraise, and J. P. Pocholle, "Propagation model for long step-index optical fibers," Appl. Opt. 15, 3040-3046 (1976).
  23. G. Durana, J. Zubía, J. Arrúe, G. Aldabaldetreku, and J. Mateo, "Dependence of bending losses on cladding thickness in plastic optical fibers," Appl. Opt. 42, 997-1002 (2003).
  24. J. D. Anderson, Computational Fluid Dynamics (McGraw-Hill, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited