OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 45, Iss. 26 — Sep. 10, 2006
  • pp: 6785–6791

Optical integrator for optical dark-soliton detection and pulse shaping

Nam Quoc Ngo  »View Author Affiliations

Applied Optics, Vol. 45, Issue 26, pp. 6785-6791 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (689 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The design and analysis of an Nth-order optical integrator using the digital filter technique is presented. The optical integrator is synthesized using planar-waveguide technology. It is shown that a first-order optical integrator can be used as an optical dark-soliton detector by converting an optical dark-soliton pulse into an optical bell-shaped pulse for ease of detection. The optical integrators can generate an optical step function, staircase function, and paraboliclike functions from input optical Gaussian pulses. The optical integrators may be potentially used as basic building blocks of all-optical signal processing systems because the time integrals of signals may sometimes be required for further use or analysis. Furthermore, an optical integrator may be used for the shaping of optical pulses or in an optical feedback control system.

© 2006 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(130.0130) Integrated optics : Integrated optics
(230.0230) Optical devices : Optical devices

Original Manuscript: January 6, 2006
Revised Manuscript: April 7, 2006
Manuscript Accepted: April 14, 2006

Nam Quoc Ngo, "Optical integrator for optical dark-soliton detection and pulse shaping," Appl. Opt. 45, 6785-6791 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Weiner, J. P. Heritage, and R. N. Thurston, "Synthesis of phase-coherent, picosecond optical square pulses," Opt. Lett. 11, 153-155 (2006). [CrossRef]
  2. K. Okamoto, T. Kominato, H. Yamada, and T. Goh, "Fabrication of frequency spectrum synthesiser consisting of arrayed-waveguide grating pair and thermo-optic amplitude and phase controllers," Electron. Lett. 35, 733-734 (1999). [CrossRef]
  3. K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004). [CrossRef]
  4. S. Osawa, N. Wada, K. Kitayama, and W. Chujo, "Arbitrarily shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter," Electron. Lett. 37, 1356-1357 (2001). [CrossRef]
  5. S. Longhi, M. Marano, P. Laporta, and V. Pruneri, "Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1498-1500 (2000). [CrossRef]
  6. P. Petropoulos, M. Isben, A. D. Ellis, and D. J. Richardson, "Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating," J. Lightwave Technol. 19, 746-752 (2001). [CrossRef]
  7. Ph. Emplit, M. Haelterman, R. Kashyap, and M. De Lathouwer, "Fiber Bragg grating for optical dark soliton generation," IEEE Photon. Technol. Lett. 9, 1122-1124 (1997). [CrossRef]
  8. G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 2nd ed. (Addison-Wesley, 1990).
  9. W.J.Tompkins and J.G.Webster, eds., Design of Microcomputer-Based Medical Instrumentation (Prentice Hall, 1981), Chap. 3.
  10. N. Q. Ngo and L. N. Binh, "Novel realization of monotonic Butterworth-type lowpass, highpass and bandpass optical filters using phase-modulated fiber-optic interferometers and ring resonators," J. Lightwave Technol. 12, 827-841 (1994). [CrossRef]
  11. S. Banerjee, C. C. Baker, A. J. Steckl, and D. Klotzkin, "Optical properties of Er in Er-doped Zn2Si0.5Ge0.5O4 waveguide amplifiers," J. Lightwave Technol. 23, 1342-1349 (2005). [CrossRef]
  12. S. Suzuki, M. Yanagisawa, Y. Hibino, and K. Oda, "High-density integrated planar lightwave circuits using SiO2-GeO2 waveguides with a high-refractive index difference," J. Lightwave Technol. 12, 790-796 (1994). [CrossRef]
  13. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Technol. Lett. 12, 320-322 (2000). [CrossRef]
  14. R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, "Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters," J. Lightwave Technol. 20, 900-905 (2002). [CrossRef]
  15. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004). [CrossRef]
  16. S. Mookherjea, "Using gain to tune the dispersion relation of coupled-resonator optical waveguides," IEEE Photon. Technol. Lett. 18, 715-717 (2006). [CrossRef]
  17. W. Zhao and E. Bourkoff, "Propagation properties of dark solitons," Opt. Lett. 14, 703-705 (1989). [CrossRef] [PubMed]
  18. W. Zhao and E. Bourkoff, "Interactions between dark solitons," Opt. Lett. 14, 1371-1373 (1989). [CrossRef] [PubMed]
  19. Y. S. Kivshar, M. Haelterman, Ph. Emplit, and J. P. Hamaide, "Gordon-Haus effect on dark solitons," Opt. Lett. 19, 19-21 (1994). [CrossRef] [PubMed]
  20. M. Nakazawa and K. Suzuki, "10 Gbit/s pseudorandom dark soliton data transmission over 1200 km," Electron. Lett. 31, 1076-1077 (1995). [CrossRef]
  21. N. Q. Ngo and L. N. Binh, "Optical dark-soliton generators and detectors," Opt. Commun. 132, 389-402 (1996). [CrossRef]
  22. M. Nakazawa and K. Suzuki, "Generation of a pseudorandom dark soliton data train and its coherent detection by one-bit-shifting with a Mach-Zehnder interferometer," Electron. Lett. 31, 1084-1085 (1995). [CrossRef]
  23. H. B. Dwight, Tables of Integrals and Other Mathematical Data, 4th ed. (Macmillan, Collier-Macmillan Canada, 1961).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited