OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 45, Iss. 26 — Sep. 10, 2006
  • pp: 6860–6875

Radiative transfer model for aerosols in infrared wavelengths for passive remote sensing applications

Avishai Ben-David, Janon F. Embury, and Charles E. Davidson  »View Author Affiliations

Applied Optics, Vol. 45, Issue 26, pp. 6860-6875 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1258 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A comprehensive analytical radiative transfer model for isothermal aerosols and vapors for passive infrared remote sensing applications (ground-based and airborne sensors) has been developed. The theoretical model illustrates the qualitative difference between an aerosol cloud and a chemical vapor cloud. The model is based on two and two∕four stream approximations and includes thermal emission–absorption by the aerosols; scattering of diffused sky radiances incident from all sides on the aerosols (downwelling, upwelling, left, and right); and scattering of aerosol thermal emission. The model uses moderate resolution transmittance ambient atmospheric radiances as boundary conditions and provides analytical expressions for the information on the aerosol cloud that is contained in remote sensing measurements by using thermal contrasts between the aerosols and diffused sky radiances. Simulated measurements of a ground-based sensor viewing Bacillus subtilis var. niger bioaerosols and kaolin aerosols are given and discussed to illustrate the differences between a vapor-only model (i.e., only emission–absorption effects) and a complete model that adds aerosol scattering effects.

© 2006 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(280.1120) Remote sensing and sensors : Air pollution monitoring
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.1090) Scattering : Aerosol and cloud effects
(290.4210) Scattering : Multiple scattering
(300.6340) Spectroscopy : Spectroscopy, infrared

Original Manuscript: January 24, 2006
Revised Manuscript: March 17, 2006
Manuscript Accepted: March 19, 2006

Virtual Issues
Vol. 1, Iss. 10 Virtual Journal for Biomedical Optics

Avishai Ben-David, Janon F. Embury, and Charles E. Davidson, "Radiative transfer model for aerosols in infrared wavelengths for passive remote sensing applications," Appl. Opt. 45, 6860-6875 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  2. H. C. van de Hulst, Multiple Light Scattering Tables, Formulas and Application (Academic, 1980).
  3. J. Lenoble, Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures (Deepak, 1985).
  4. K. N. Liou, Radiation and Cloud Processes in the Atmosphere (Oxford U. Press, 1992).
  5. K. N. Liou, An Introduction to Atmospheric Radiation, 2nd ed. (Academic, 2002).
  6. A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, Jr., S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, "MODTRAN4 radiative transfer modeling for atmospheric correction," in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed., Proc. SPIE 3756, 348-353 (1999). [CrossRef]
  7. R. A. Sutherland, J. C. Thompson, and J. D. Klett, "Effects of multiple scattering and thermal emission on target-background signatures sensed through obscuring atmospheres," in Targets and Backgrounds VI: Characterization, Visualization, and the Detection Process, W. R. Watkins, D. Clement, and R. R. Reynolds, eds., Proc. SPIE 4029, 300-309 (2000). [CrossRef]
  8. R. A. Sutherland, J. C. Thompson, and S. D. Ayres, "Infrared scene modeling in emissive, absorptive, and multiple scattering atmospheres," in Targets and Backgrounds VII: Characterization and Representation, W. R. Watkins, D. Clement, and R. R. Reynolds, eds., Proc. SPIE 4370, 210-219 (2001). [CrossRef]
  9. W. J. Marinelli, C. M. Gittins, and T. E. Ustun, "AIRIS wide area detection system," in Proceedings of the 2002 Joint Service Scientific Conference on Chemical and Biological Defense Research, 19-21 November 2002, D.A.Berg, ed., (ECBC-SP-015, 2003).
  10. A. Ben-David, "Remote detection of biological aerosols at a distance of 3 km with a passive Fourier transform infrared (FTIR) sensor," Opt. Express 11, 418-429 (2003).
  11. A. Ben-David and H. Ren, "Detection, identification and estimation of biological aerosols and vapors with Fourier transform infrared spectrometer," Appl. Opt. 42, 4887-4900 (2003).
  12. J. M. Therault, E. Puckrin, and J. O. Jensen, "Passive standoff detection of Bacillus subtilis aerosol by Fourier transform infrared radiometry," Appl. Opt. 42, 6696-6703 (2003).
  13. F. M. D'Amico, D. K. Emge, and G. Roelant, "Outdoor chamber measurements of biological aerosols with passive FTIR spectrometer," in Chemical and Biological Standoff Detection, J. O. Jenson and J.-M. Therault, eds., Proc. SPIE 5268, 173-183 (2003). [CrossRef]
  14. W. J. Marinelli, C. M. Gittins, B. C. Cosofret, and T. E. Ustun, "AIRIS wide area detector system field tests," in Proceedings of the Sixth Joint Conference for Standoff Detection and Biological Defense, Williamsburg, Va. (2004).
  15. F. M. D'Amico, R. P. Moon, and C. E. Davidson, "Aerosol identification using a hybrid active/passive system," in Lidar Remote Sensing for Environment Monitoring VI, U. N. Singh, ed., Proc. SPIE 5887, 149-157 (2005).
  16. D. F. Flanigan, "Prediction of the limits of detection of hazardous vapors by passive infrared with the use of MODTRAN," Appl. Opt. 35, 6090-6098 (1996).
  17. A. Ben-Shalom, B. Brazilai, D. Cabib, A. D. Devir, S. G. Lipson, and U. P. Oppenheim, "Sky radiance at wavelengths between 7 and 14 μm: measurements, calculation, and comparison with LOWTRAN-4 predictions," Appl. Opt. 19, 838-839 (1980).
  18. R. G. Issacs, W.-C. Wang, R. D. Worsham, and S. Goldberg, "Multiple scattering LOWTRAN and FASCODE models," Appl. Opt. 26, 1272-1281 (1987).
  19. B. M. Herman and S. R. Browning, "A numerical solution to the equation of radiative transfer," J. Atmos. Sci. 32, 559-566 (1965). [CrossRef]
  20. W. E. Meador and W. R. Weaver, "Two-stream approximations to radiative transfer in planetary atmospheres: a unified description of existing methods and new improvement," J. Atmos. Sci. 37, 630-643 (1980). [CrossRef]
  21. W. M. Elsasser, Heat Transfer by Infrared Radiation in the Atmosphere, in Harvard Meteorological Studies (Harvard U. Press, 1942), Vol. 6, p. 107.
  22. O. B. Toon, C. P. Mckay, and T. P. Ackerman, "Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres," J. Geophys. Res. 94, 16287-16301 (1989).
  23. Q. Fu, K. N. Liou, M. C. Cribb, T. P. Charlock, and A. Grossman, "Multiple scattering parametrization in thermal infrared radiative transfer," J. Atmos. Sci. 54, 2799-2812 (1997). [CrossRef]
  24. A. Ben-David, "Multiple-scattering transmission and an average photon path length of a plane-parallel beam in a homogeneous medium," Appl. Opt. 34, 2802-2810 (1995).
  25. J. M. Lioyd, Thermal Imaging System (Plenum, 1975).
  26. E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996).
  27. D. F. Flanigan and J. Astarita, "Low angle sky DT from MODTRAN atmospheric models," in Third Workshop on Stand-Off Detection for Chemical and Biological Defense, Williamsburg, Va. (1994), pp. 397-408.
  28. M. L. Polak, J. L. Hall, and K. C. Herr, "Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal," Appl. Opt. 34, 5406-5412 (1995).
  29. G. Laufer and A. Ben-David, "Optimized differential absorption radiometer (DAR) for remote sensing of chemical effluents," Appl. Opt. 41, 2263-2273 (2002).
  30. A. Ben-David, A. Ifarraguerri, and A Samuels, "Correlation spectroscopy with diffractive grating synthetic spectra and orthogonal subspace projection (OSP) filters," Opt. Eng. 42, 325-333 (2003). [CrossRef]
  31. B. M. Herman, A. Ben-David, and K. Thome, "Numerical technique for solving the radiative transfer equation for a spherical-shell atmosphere," Appl. Opt. 33, 1760-1770 (1994).
  32. B. M. Herman, T. R. Caudill, D. E. Flittner, K. J. Thome, and A. Ben-David, "Comparison of the Gauss-Siedel spherical polarized radiative transfer code with other radiative transfer codes," Appl. Opt. 34, 4563-4572 (1995).
  33. A. Ben-David and H. Ren, "Comparison between orthogonal subspace projection and background subtraction techniques applied to remote-sensing data," Appl. Opt. 44, 3846-3855 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited