OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 27 — Sep. 20, 2006
  • pp: 7035–7042

Selective erasure of speckle-multiplexed holograms by use of a double Mach–Zehnder interferometric arrangement

Masatoshi Bunsen, Hirosuke Furuta, and Atsushi Okamoto  »View Author Affiliations

Applied Optics, Vol. 45, Issue 27, pp. 7035-7042 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (841 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel method to selectively erase and update speckle-multiplexed holograms in photorefractive crystals by use of a double Mach-Zehnder (DMZ) interferometric arrangement is presented. The DMZ arrangement automatically produces a pair of π-phase-shifted interference patterns used for holographic recording, erasure, and update operations with a fairly simple optical configuration that consists of a commonly used dielectric multilayer beam splitter and two mirrors. The recording and the erasure conditions required for erasing a photorefractive hologram quickly and completely are discussed by calculating the temporal property of the hologram buildup and decay using the time-dependent coupled-wave equations. An experiment is also performed, in which arbitrary holograms in speckle-multiplexed holograms are selectively erased and updated with the simple DMZ optical configuration.

© 2006 Optical Society of America

OCIS Codes
(090.4220) Holography : Multiplex holography
(090.7330) Holography : Volume gratings
(190.5330) Nonlinear optics : Photorefractive optics
(210.2860) Optical data storage : Holographic and volume memories

Original Manuscript: March 6, 2006
Revised Manuscript: June 4, 2006
Manuscript Accepted: June 12, 2006

Masatoshi Bunsen, Hirosuke Furuta, and Atsushi Okamoto, "Selective erasure of speckle-multiplexed holograms by use of a double Mach-Zehnder interferometric arrangement," Appl. Opt. 45, 7035-7042 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, "High-transfer-rate high-capacity holographic disk data-storage system," Appl. Opt. 43, 4902-4914 (2004). [CrossRef] [PubMed]
  2. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage, Springer Series in Optical Sciences (Springer-Verlag, 2000).
  3. D. Psaltis and G. W. Burr, "Holographic data storage," Computer 31(2),52-60 (1998). [CrossRef]
  4. H. Horimai, X. Tan, and J. Li, "Collinear holography," Appl. Opt. 44, 2575-2579 (2005). [CrossRef] [PubMed]
  5. F. H. Mok, "Angle-multiplexed storage of 5000 holograms in lithium niobate," Opt. Lett. 18, 915-917 (1993). [CrossRef] [PubMed]
  6. G. A. Rakuljic, V. Levya, and A. Yariv, "Optical data storage by using orthogonal wavelength-multiplexed volume holograms," Opt. Lett. 17, 1471-1473 (1992). [CrossRef] [PubMed]
  7. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, "Volume hologram multiplexing using a deterministic phase coding method," Opt. Commun. 85, 171-176 (1991). [CrossRef]
  8. G. Barbastathis, M. Levene, and D. Psaltis, "Shift multiplexing with spherical reference waves," Appl. Opt. 35, 2403-2417 (1996). [CrossRef] [PubMed]
  9. K. Curtis, A. Pu, and D. Psaltis, "Method for holographic storage using peristrophic multiplexing," Opt. Lett. 19, 993-994 (1994). [CrossRef] [PubMed]
  10. K. Anderson and K. Curtis, "Polytopic multiplexing," Opt. Lett. 29, 1402-1404 (2004). [CrossRef] [PubMed]
  11. A. M. Darskii and V. B. Markov, "Shift selectivity of holograms with a reference speckle wave," Opt. Spectrosc. (USSR) 65, 392-394 (1988).
  12. V. Markov, J. Millerd, J. Trolinge, and M. Norrie, "Multilayer volume holographic optical memory," Opt. Lett. 24, 265-267 (1999). [CrossRef]
  13. Y. H. Kang, K. H. Kim, and B. Lee, "Volume hologram scheme using optical fiber for spatial multiplexing," Opt. Lett. 22, 739-741 (1997). [CrossRef] [PubMed]
  14. M. G. Moharam and L. Young, "Reading and optical erasure of holograms stored by the photorefractive effect in lithium niobate," Appl. Opt. 17, 2773-2778 (1978). [CrossRef] [PubMed]
  15. J. P. Huignard, J. P. Herriau, and F. Micheron, "Selective erasure and processing in volume holograms superimposed in photosensitive ferroelectrics," Ferroelectrics 11, 393-396 (1976). [CrossRef]
  16. H. Sasaki, J. Ma, Y. Taketomi, Y. Fainman, and S. H. Lee, "Fast update of dynamic photorefractive optical memory," Opt. Lett. 17, 1468-1470 (1992). [CrossRef] [PubMed]
  17. H. Sasaki, J. Ma, Y. Fainman, S. H. Lee, and Y. Taketomi, "Dynamics of a composite grating in photorefractive crystals for memory application," J. Opt. Soc. Am. A 11, 2456-2470 (1994). [CrossRef]
  18. Y. Qiao and D. Psaltis, "Sampled dynamic holographic memory," Opt. Lett. 17, 1376-1378 (1992). [CrossRef] [PubMed]
  19. M. Aguilar, M. Carrascosa, F. Agullo-Lopez, and E. Serrano, "Optimization of selective erasure in photorefractive memories," J. Opt. Soc. Am. B 14, 110-115 (1997). [CrossRef]
  20. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  21. J. H. Hong, S. Campbell, and P. Yeh, "Optical pattern classifier with Perceptron learning," Appl. Opt. 29, 3020-3025 (1990). [CrossRef]
  22. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  23. M. Horowitz, D. Kligler, and B. Fischer, "Time-dependent behavior of photorefractive two- and four-wave mixing," J. Opt. Soc. Am. B 8, 2204-2217 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited