OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 27 — Sep. 20, 2006
  • pp: 7073–7088

Validation of the Raman lidar algorithm for quantifying aerosol extinction

Felicita Russo, David N. Whiteman, Belay Demoz, and Raymond M. Hoff  »View Author Affiliations

Applied Optics, Vol. 45, Issue 27, pp. 7073-7088 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (759 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To calculate aerosol extinction from Raman lidar data, it is necessary to evaluate the derivative of a molecular Raman signal with respect to range. The typical approach taken in the lidar community is to make an a priori assumption about the functional behavior of the data to calculate the derivative. It has previously been shown that the use of the chi-squared technique to determine the most likely functional behavior of the data prior to actually calculating the derivative eliminates the need for making a priori assumptions. Here that technique is validated through numerical simulation and by application to a significant body of Raman lidar measurements. In general, we show that the chi-squared approach for evaluating extinction yields lower extinction uncertainty than traditional techniques. We also use the technique to study the feasibility of developing a general characterization of the extinction uncertainty that could permit the uncertainty in Raman lidar aerosol extinction measurements to be estimated accurately without the need of the chi-squared technique.

© 2006 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.3640) Atmospheric and oceanic optics : Lidar
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.2200) Scattering : Extinction

Original Manuscript: November 15, 2005
Revised Manuscript: March 23, 2006
Manuscript Accepted: April 24, 2006

Felicita Russo, David N. Whiteman, Belay Demoz, and Raymond M. Hoff, "Validation of the Raman lidar algorithm for quantifying aerosol extinction," Appl. Opt. 45, 7073-7088 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Climate Change 2001: The Scientific Basis (Cambridge U. Press, 2001).
  2. A. Ansmann, M. Riebesell, and C. Weitkamp, "Measurements of atmospheric aerosol extinction profiles with a Raman lidar," Opt. Lett. 15, 746-748 (1990). [CrossRef] [PubMed]
  3. J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, "EARLINET: a European aerosol research lidar network," in Advances in Laser Remote Sensing, A.Dabas, C.Loth, and J.Pelon, eds. (Editions de L'Ecole Polytechnique, 2001), pp. 155-158.
  4. G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bosenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, Leonce Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, "Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio," Appl. Opt. 43, 5370-5385 (2004). [CrossRef] [PubMed]
  5. C. Wietkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer Science & Business Media, 2005).
  6. D. N. Whiteman, "Application of statistical methods to the determination of slope in lidar data," Appl. Opt. 38, 3360-3369 (1999). [CrossRef]
  7. D. N. Whiteman, "Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations," Appl. Opt. 42, 2571-2592 (2003). [CrossRef] [PubMed]
  8. G. Marsaglia, "Ratios of normal variables and ratios of sums of uniform variables," J. Am. Stat. Assoc. 60, 193-204 (1965). [CrossRef]
  9. D. N. Whiteman, G. Schwemmer, T. Berkoff, H. Plotkin, L. Ramos-Izquierdo, and G. Pappalardo, "Performance modeling of an airborne Raman water vapor lidar," Appl. Opt. 40, 375-390 (2001). [CrossRef]
  10. D. N. Whiteman and S. H. Melfi, "Cloud liquid water, mean droplet radius and number density measurements using a Raman lidar," J. Geophys. Res. 104, 31411-31419 (1999). [CrossRef]
  11. D. N. Whiteman, K. D. Evans, B. Demoz, D. O'C. Starr, E. W. Eloranta, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, and F. J. Schmidlin, "Raman lidar measurements of water vapor and cirrus clouds during the passage of Hurricane Bonnie," J. Geophys. Res. 106, 5211-5225 (2001). [CrossRef]
  12. H. E. Revercomb, D. D. Turner, D. C. Tobin, R. O. Knuteson, W. F. Feltz, J. Barnard, J. Bosenberg, S. Clough, D. Cook, R. Ferrare, J. Goldsmith, S. Gutman, R. Halthore, B. Lesht, J. Liljegren, H. Linne, J. Michalsky, V. Morris, W. Porch, S. Richardson, B. Schmid, M. Splitt, T. Van Hove, E. Westwater, and D. Whiteman, "The ARM program's water vapor intensive observation periods--Overview, initial accomplishments, and future challenges," Bull. Am. Meteorol. Soc. 84, 217-236 (2003). [CrossRef]
  13. P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, 1992).
  14. D. N. Stacey, "Rayleigh's legacy to modern physics: high resolution spectroscopy," Eur. J. Phys. 15, 236-242 (1994). [CrossRef]
  15. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, and K. D. Evans, "Raman lidar measurements of pinatubo aerosols over southeastern Kansas during November-December 1991," Geophys. Res. Lett. 19, 1599-1602 (1992). [CrossRef]
  16. W. C. Malm, J. F. Sisler, D. Huffman, R. A. Eldred, and T. A. Cahill, "Spatial and seasonal trends in particle concentration and optical extinction in the United States," J. Geophys. Res. 99, 1347-1370 (1994). [CrossRef]
  17. R. J. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences (Wiley, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited