OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 27 — Sep. 20, 2006
  • pp: 7104–7109

Emissitivity spectra obtained from field and laboratory measurements using the temperature and emissivity separation algorithm

Juan C. Jiménez-Muñoz and José A. Sobrino  »View Author Affiliations

Applied Optics, Vol. 45, Issue 27, pp. 7104-7109 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (126 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface emissivities play an important role in thermal remote sensing, since knowledge of them is required to estimate land surface temperature with enough accuracy. They are also important in other environmental or geological studies. We show the results obtained for the emissivity spectra of different natural surfaces (water, green, and senescent vegetation) by applying the temperature and emissivity separation (TES) algorithm to ground-based measurements collected at the field with a multiband thermal radiometer. The results have been tested with data included in spectral libraries, and rms errors lower than 0.01 have been found, except for senescent vegetation. Two methods are also proposed to apply the TES algorithm to measurements achieved in the laboratory: (i) by heating the sample and (ii) using a box with reflective walls.

© 2006 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature
(120.6810) Instrumentation, measurement, and metrology : Thermal effects

Original Manuscript: November 16, 2005
Revised Manuscript: April 21, 2006
Manuscript Accepted: May 4, 2006

Virtual Issues
Vol. 1, Iss. 10 Virtual Journal for Biomedical Optics

Juan C. Jiménez-Muñoz and José A. Sobrino, "Emissitivity spectra obtained from field and laboratory measurements using the temperature and emissivity separation algorithm," Appl. Opt. 45, 7104-7109 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. P. Lyon, "Analysis of rocks by spectral infrared emission (8 to 25 microns)," Econ. Geol. 60, 715-736 (1965). [CrossRef]
  2. A. R. Gillespie, S. Rokugawa, S. Hook, T. Matsunaga, and A. B. Kahle, "A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images," IEEE Trans. Geosci. Remote Sens. 36, 1113-1126 (1998). [CrossRef]
  3. F. Becker, "The impact of spectral emissivity on the measurement of land surface temperature from a satellite," Int. J. Remote Sens. 10, 1509-1522 (1987). [CrossRef]
  4. F. Becker and Z.-L. Li, "Surface temperature and emissivity at various scales: definition, measurement and related problems," Remote Sens. Rev. 12, 225-253 (1995). [CrossRef]
  5. P. Dash, F.-M. Göttsche, F.-S. Olesen, and H. Fischer, "Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends," Int. J. Remote Sens. 23, 2563-2594 (2002). [CrossRef]
  6. J. A. Sobrino, Z.-L. Li, G. Soria, and J. C. Jiménez, "Land surface temperature and emissivity retrieval from remote sensing data," Recent Res. Dev. Geophys. 4, 21-44 (2002).
  7. Y. H. Kerr, J. P. Lagouarde, F. Nerry, and C. Ottlé, "Land surface temperature retrieval techniques and applications: case of AVHRR," in Thermal Remote Sensing in Land Surface Processes, D.A.Quattrochi and J.C.Luvall, eds. (CRC, 2004), pp. 33-109.
  8. F. Nerry, J. Labed, and M. P. Stoll, "Spectral properties of land surfaces in the thermal infrared. Part I: laboratory measurements of absolute spectral emissivity signatures," J. Geophys. Res. 95, 7027-7044 (1990). [CrossRef]
  9. J. Labed and M. P. Stoll, "Spatial variability of land surface emissivity in the thermal infrared band: spectral signature and effective surface temperature," Remote Sens. Environ. 38, 1-17 (1991). [CrossRef]
  10. J. W. Salisbury and M. D'Aria, "Emissivity of terrestrial materials in the 8-14 μm atmospheric window," Remote Sens. Environ. 42, 83-106 (1992). [CrossRef]
  11. S. J. Hook, "ASTER spectral library," http://speclib.jpl.nasa.gov.
  12. A. R. Gillespie, "Lithologic mapping of silicate rocks using TIMS," in The TIMS Data Users' Workshop, JPL Publication 86-38, (Jet Propulsion Laboratory, Pasadena, California), pp. 29-44.
  13. V. Payan and A. Royer, "Analysis of temperature emissivity separation (TES) algorithm applicability and sensitivity," Int. J. Remote Sens. 25, 15-37 (2004). [CrossRef]
  14. J. F. Moreno, L. Alonso, G. Férnandez, J. C. Fortea, S. Gandía, L. Guanter, J. C. García, J. M. Martí, J. Melia, F. Camacho, J. García, B. Martínez, A. Verger, J. A. Sobrino, J. Cuenca, J. C. Jiménez, G. Sòria, M. Romaguera, M. Zaragoza, J. A. Martínez, M. P. Utrillas, V. Estellés, J. L. Gómez, J. Calpe, J. Vila, L. Faus, A. Calera, J. González, A. Moratalla, A. Cuesta, E. Rubio, F. J. Montero, A. Brasa, F. Montero, A. Cruz, H. López, R. López, M. Pujadas, F. Molero, A. Herranz, M. Habermeyer, M. Bachmann, S. Holzwarth, A. Mueller, F. Baret, D. Beal, G. d'Urso, R. Giorgiogaggia, U. Lazzaro, R. Boussema, R. Abdelfattah, H. Bouchnak, J. L. Roujean, O. Samin, R. Bianchi, and M. Davidson, "The SPECTRA Barrax campaign (SPARC): overview and first results from CHRIS data," in Proceedings of the Second CHRIS/PROBA Workshop, ESA Publications SP-578, (ESA-ESRIN, 2004).
  15. J. Moreno, "Overview of current activities in the framework of SEN2FLEX," presented at the SPARC Final Presentation Meeting, ITC, Enschede, The Netherlands (4-5 July 2005).
  16. C. I. Gove, S. J. Hook, and E. D. Paylor II, "The JPL spectral library," http://speclib.jpl.nasa.gov/documents/jpl_desc.htm.
  17. J. M. Norman and F. Becker, "Terminology in thermal infrared remote sensing of natural surfaces," Agric. Forest Meteorol. 77, 153-166 (1995). [CrossRef]
  18. A. Kribus, I. Vishnevetsky, E. Rotenberg, and D. Yakir, "Systematic errors in the measurements of emissivity caused by directional effects," Appl. Opt. 42, 1839-1846 (2003). [CrossRef] [PubMed]
  19. J. Cuenca, Global Change Unit, Department of Thermodynamics, University of Valencia, Dr Moliner 50, 46100 Burjassot, Spain (personal communication, 2005).
  20. K. J. K. Buettner and C. D. Kern, "The determination of infrared emissivities of terrestrial surfaces," J. Geophys. Res. 70, 1324-1337 (1965). [CrossRef]
  21. R. W. Dana, "Measurements of 8-14 μm emissivity of igneous rock and mineral surfaces," Ph.D. dissertation (University of Washington, 1969).
  22. J. A. Sobrino and V. Caselles, "Medida mediante el método de la caja de la emisividad en la banda espectral de los 8-14 μm de algunos suelos agricolas y de la vegetación," An. Fis. Ser. B 85, 220-227 (1989).
  23. F. Nerry and M. P. Stoll, "Spectral properties of land surfaces in the thermal infrared. Part II: field method for spectrally averaged emissivity measurements," J. Geophys. Res. 957045-7062 (1990). [CrossRef]
  24. E. Rubio, V. Caselles, and C. Badenas, "Emissivity measurements of several soils and vegetation types in the 8-14 μm wave band: analysis of two field methods," Remote Sens. Environ. 59, 490-521 (1997). [CrossRef]
  25. E. Rubio, V. Caselles, C. Coll, E. Valor, and F. Sospedra, "Thermal-infrared emissivities of natural surfaces: improvements on the experimental set-up and new measurements," Int. J. Remote Sens. 24, 5379-5390 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited