OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 28 — Oct. 1, 2006
  • pp: 7211–7223

Mosaic imaging with spatial light modulator technology

Mark T. Gruneisen, Matthew B. Garvin, Raymond C. Dymale, and James R. Rotgé  »View Author Affiliations


Applied Optics, Vol. 45, Issue 28, pp. 7211-7223 (2006)
http://dx.doi.org/10.1364/AO.45.007211


View Full Text Article

Enhanced HTML    Acrobat PDF (2650 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffractive wavefront control with spatial light modulator technology has been successfully demonstrated both as a means of steering optical wavefronts and for compensating large optical aberrations. We describe the use of a spatial light modulator operating as a programmable diffractive optic to record extended-field-of-view mosaic images centered about a large off-axis field angle. A gimbaled primary mirror allows the nominal viewing angle to be varied, and diffractive wavefront steering allows images to be acquired at discrete increments in the field angle about the nominal angle. Diffractive wavefront compensation corrects aberrations associated with the primary mirror orientation and changes in field angle introduced by diffractive wavefront steering. A time sequence of images recorded at discrete increments in the field angle is then digitally combined to create a high-pixel-count mosaic image. The effects of diffraction efficiency and wavelength-dependent wavefront errors on image quality are analyzed.

© 2006 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.0090) Holography : Holography
(090.1000) Holography : Aberration compensation
(090.1760) Holography : Computer holography

ToC Category:
Holography

History
Original Manuscript: January 6, 2006
Manuscript Accepted: March 31, 2006

Citation
Mark T. Gruneisen, Matthew B. Garvin, Raymond C. Dymale, and James R. Rotgé, "Mosaic imaging with spatial light modulator technology," Appl. Opt. 45, 7211-7223 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-28-7211


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Dou and M. K. Giles, "Programmable phase grating and beam steerer by operating a LCTV," in Advanced Imaging Technologies and Commercial Applications, N. Clark and J. D. Gonglewski, eds., Proc. SPIE 2566, 26-34 (1995). [CrossRef]
  2. J. Rha and M. K. Giles, "Implementation of an adaptive Shack-Hartmann sensor using a phase-modulated liquid crystal spatial light modulator," in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE 4493, 80-87 (2001). [CrossRef]
  3. A. Kirk, T. Tabata, M. Ishikawa, and H. Toyoda, "Reconfigurable computer generated holograms," Opt. Commun. 105, 302-308 (1994). [CrossRef]
  4. H. Toyoda, Y. Kobayashi, N. Yoshida, Y. Igasaki, T. Hara, M. Ishikawa, and M. H. Wu, "High efficient electrically addressable spatial light modulator for reconfigurable optical connection," in Spatial Light Modulators 1999, Vol. SMB3 of 1999 OSA Technical Digest Series (Optical Society of America, 1999), pp. 14-16.
  5. Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999). [CrossRef]
  6. K. A. Bauchert, S. A. Serati, and A. Furman, "Advances in liquid crystal spatial light modulators," in Optical Pattern Recognition XIII, D. P. Casasent and T.-H. Chao, eds., Proc. SPIE 4734, 35-43 (2002).
  7. M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, "Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators," Opt. Eng. 43, 1387-1393 (2004). [CrossRef]
  8. X. Wang, B. Wang, J. Pouch, F. Miranda, M. Fisch, J. E. Anderson, V. Sergan, and P. Bos, "Liquid crystal on silicon (LCOS) wavefront corrector and beam steerer," in Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 5162, 139-146 (2003). [CrossRef]
  9. M. T. Gruneisen, T. Martinez, and D. L. Lubin, "Dynamic holography for high-dynamic-range two-dimensional laser wavefront control," in High-Resolution Wavefront Control: Methods, Devices, and Applications III , J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4493, 224-238 (2001).
  10. D. Guthals, D. Sox, M. Joswick, and P. J. Rodney, "Real-time holographic compensation of large optics for deployment in space," in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4124, 245-256 (2000). [CrossRef]
  11. M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Compensated telescope system with programmable diffractive optic," Opt. Eng. 44, 023201 (2005).
  12. G. J. Swanson, Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements, MIT Lincoln Laboratory Technical Rep. 854 (MIT, 1989), pp. 1-47.
  13. M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Wavelength-dependent characteristics of a telescope system with diffractive wavefront control," Opt. Eng. 44, 068002 (2005).
  14. J. R. Hui, X. Wu, and C. Warde, "Addressing large arrays of electrostatic actuators for adaptive optics applications," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 17-27 (2004). [CrossRef]
  15. H. Zhu, P. Bierden, S. Cornelissen, T. Bifano, and J. Kim, "Design and fabrication of reflective spatial light modulators for high-dynamic-range wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 39-45 (2004). [CrossRef]
  16. R. Ryf, H. R. Stuart, and C. R. Giles, "MEMS tip/tilt and piston mirror arrays as diffractive optical elements," in Advanced Wavefront Control: Methods, Devices, and Applications III, M. T. Gruneisen, J. D. Gonglewski, and M. K. Giles, eds., Proc. SPIE 5894, 5894OC1-5894OC-11 (2005).
  17. P. McManamon, J. Shi, and P. J. Bos, "Broadband optical phased array beam steering," Opt. Eng. 44, 128004.1-128004.5 (2005).
  18. M. T. Gruneisen, R. C. Dymale, and M. B. Garvin, "Wavelength-dependent characteristics of modulo N lamba 0 optical wavefront control," Appl. Opt. 45, 4075-4083 (2006). [CrossRef]
  19. M. T. Gruneisen, R. C. Dymale, J. R. Rotge, D. G. Voelz, and M. Deramo, "Wavelength-agile telescope system with diffractive wavefront control and acousto-optic spectral filter," Opt. Eng. 44, 103202-1-103202-5 (2005).
  20. M. T. Gruneisen, M. B. Garvin, R. C. Dymale, and J. R. Rotge, "Agile-field telescope system with diffractive wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications III, M. T. Gruneisen, J. D. Gonglewski, and M. K. Giles, eds., Proc. SPIE 5894, 589414.1-589414.6 (2005).
  21. J. C. Wyant and K. Creath, "Basic wavefront aberration theory for optical metrology," Applied Optics and Optical Engineering, (Academic, 1992), Vol. 11, Chap. 1.
  22. D. Kundur and D. Hatzinakos, "Blind image deconvolution," IEEE Signal Process. Mag. 13, 43-64 (1996). [CrossRef]
  23. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Addison-Wesley, 1992).
  24. Space Imaging: One Year Viewed from Space, http://www.spaceimaging.com/gallery/9-11.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited