OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 28 — Oct. 1, 2006
  • pp: 7239–7247

Commercial scale fabrication method for fabricating a gradient refractive-index rod: overcoming volume shrinkage and chemical restrictions

Hansol Cho, Young Mok Son, Mu Gyeom Kim, Byoung Joo Ra, Joon-Yong Park, Seung Hui Lee, Jin Sung Choi, Min Young Song, O. Ok Park, Youn Cheol Kim, and Jin Taek Hwang  »View Author Affiliations


Applied Optics, Vol. 45, Issue 28, pp. 7239-7247 (2006)
http://dx.doi.org/10.1364/AO.45.007239


View Full Text Article

Enhanced HTML    Acrobat PDF (665 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a fabrication method for a gradient refractive-index polymeric object from a binary comonomer system, regardless of the monomers' reactivity ratio and the molar volume criteria of gradient refractive-index development. To fabricate a large gradient refractive-index rod consisting of a methyl methacrylate and 2,2,3,3-tetrafluoropropyl methacrylate comonomer pair that has not been used for fabrication of a copolymer gradient refractive-index rod by previous conventional methods because of chemical restrictions in molar volume and reactivity ratio difference, we use the so-called successive UV polymerization in a controlled radial volume in conjunction with an automatic refill reactor. Simultaneously and automatically, the volume shrinkage problem, an inevitable shortcoming for the fabrication of a large polymeric object in a commercial production scale, is overcome and exploited. The theoretical features of the refractive-index profile generation of this method are also compared with those of conventional methods for which the chemical restrictions of monomers are crucial for the shape of a refractive-index profile.

© 2006 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(110.2760) Imaging systems : Gradient-index lenses
(160.5470) Materials : Polymers

ToC Category:
Imaging Systems

History
Original Manuscript: January 18, 2005
Revised Manuscript: October 20, 2005
Manuscript Accepted: October 25, 2005

Citation
Hansol Cho, Young Mok Son, Mu Gyeom Kim, Byoung Joo Ra, Joon-Yong Park, Seung Hui Lee, Jin Sung Choi, Min Young Song, O. Ok Park, Youn Cheol Kim, and Jin Taek Hwang, "Commercial scale fabrication method for fabricating a gradient refractive-index rod: overcoming volume shrinkage and chemical restrictions," Appl. Opt. 45, 7239-7247 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-28-7239


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Lachs, Fiber Optic Communications: Systems, Analysis, and Enhancements (McGraw-Hill, 1998).
  2. W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF: Polymer Optical Fibers for Data Communication (Springer-Verlag, 2001).
  3. Y. Ohtsuka, Y. Koike, and H. Yamazaki, "Studies on the light-focusing plastic rod. 6: The photocopolymer rod of methyl methacrylate with vinyl benzoate," Appl. Opt. 20, 280-285 (1981). [CrossRef] [PubMed]
  4. Y. Koike, Y. Kimoto, and Y. Ohtsuka, "Studies on the light-focusing plastic rod. 12: The GRIN fiber lens of methyl methacrylate-vinyl phenylacetate copolymer," Appl. Opt. 21, 1057-1062 (1982). [CrossRef] [PubMed]
  5. Y. Koike, "High-bandwidth graded-index polymer optical fibre," Polymer 32, 1737-1745 (1991). [CrossRef]
  6. T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, "Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission," J. Lightwave Technol. 15, 2095-2100 (1997). [CrossRef]
  7. Y. Koike, Y. Hondo, and E. Nihei, "Graded-index polymer optical fiber by new random copolymerization technique," Proc. SPIE 1991 1592 , 62-72 (1991). [CrossRef]
  8. Y. Koike, Y. Takezawa, and Y. Ohtauka, "New interfacial-gel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays," Appl. Opt. 27, 486-491 (1988). [CrossRef] [PubMed]
  9. M. Sato, T. Ishigure, and Y. Koike, "Thermally stable high-bandwidth graded-index polymer optical fiber," J. Lightwave Technol. 18, 952-958 (2000). [CrossRef]
  10. T. Ishigure, S. Tanaka, E. Kobayashi, and Y. Koike, "Accurate refractive index profiling in a graded-index plastic optical fiber exceeding gigabit transmission rates," J. Lightwave Technol. 20, 1449-1456 (2002). [CrossRef]
  11. B. C. Ho, J. H. Chen, W. C. Chen, Y. H. Chang, S. Y. Yang, J. J. Chen, and T. W. Tseng, "Graded-index polymer fibers prepared by extrusion," Polym. J. 27, 310-313 (1995). [CrossRef]
  12. C.-W. Park, B. S. Lee, J. K. Walker, and W. Y. Choi, "A new processing method for the fabrication of cylindrical objects with radially varying properties," Ind. Eng. Chem. Res. 39, 79-83 (2000). [CrossRef]
  13. C. A. Spade and V. A. Volpert, "Mathematical modeling of interfacial gel polymerization," Math. Comput. Modell. 30, 67-73 (1999). [CrossRef]
  14. C. A. Spade and V. A. Volpert, "Mathematical modeling of interfacial gel polymerization for weak and strong gel effects," Macromol. Theory Simul. 9, 26-46 (2000). [CrossRef]
  15. L. L. Blyler, Jr., T. Salamon, C. Ronaghan, and C. S. Koeppen, "Reliability of graded-index plastic optical fibers," Mat. Res. Soc. Symp. Proc. 531, 107-118 (1998). [CrossRef]
  16. L. L. Blyler, Jr., T. Salamon, W. R. White, M. Dueser, W. A. Reed, C. S. Koeppen, C. Ronaghen, P. Wiltzius, and X. Quan, "Performance and reliability of graded-index polymer optical fibers," in Proceedings of the 47th International Wire and Cable Symposium (International Wire and Cable Symposium, Inc., 1998), pp. 241-247.
  17. Y. Koike, S. Matsuoka, and H. E. Bair, "Origin of excess light scattering on poly(methyl methacrylate) glasses," Macromolecules 25, 4807-4815 (1992). [CrossRef]
  18. N. Taino, Y. Koike, "Estimate of light scattering loss of amorphous polymer glass from its molecular structure," Jpn. J. Appl. Phys. 36, 743-748 (1997). [CrossRef]
  19. F. G. H. van Duijnhoven and C. W. M. Bastiaansen, "Monomers and polymers in a centrifugal field: a new method to produce refractive-index gradients in polymers," Appl. Opt. 38, 1008-1014 (1999). [CrossRef]
  20. F. G. H. van Duijnhoven, "Gradient refractive index polymers produced in a centrifugal field," Ph.D. dissertation (Enidhoven University, The Netherlands, 1999).
  21. G. Odian, Principles of Polymerization (Wiley, 1991).
  22. S. H. Im, D. J. Suh, O. O. Park, H. Cho, J. S. Choi, J. G. Park, and J. T. Hwang, "Fabrication of a graded-index polymer optical fiber preform by using a centrifugal force," Kor. J. Chem. Eng. 19, 505-509 (2002). [CrossRef]
  23. S. H. Im, D. J. Suh, O. O. Park, H. Cho, J. S. Choi, J. G. Park, and J. T. Hwang, "Fabrication of a graded-index polymer optical fiber preform without a cavity by inclusion of an additional monomer under a centrifugal force field," Appl. Opt. 41, 1858-1863 (2002). [CrossRef] [PubMed]
  24. B. G. Shin, J. H. Park, and J. J. Kim, "Low-loss, high-bandwidth graded-index plastic optical fiber fabricated by the centrifugal deposition method," Appl. Phys. Lett. 82, 4645-4647 (2003). [CrossRef]
  25. J. S. Choi, H. Cho, M. G. Kim, B. J. Ra, J. Y. Park, J. T. Hwang, J. G. Park, S. H. Lee, M. H. Do, J. H. Kim, E. G. Lee, S. H. Park, and O. O. Park, "Novel manufacturing method of graded index copolymer optical fiber preform and its optical characteristics," in Proceedings of the 51st International Wire and Cable Symposium (International Wire and Cable Symposium, Inc., 2002), pp. 280-287.
  26. H. Cho, J. S. Choi, J. T. Hwang, and S. H. Cho, "Cavity-preventing type reactor and a method for fabricating a preform for a plastic optical fiber using the same," U.S. patent 6, 984, 345 (10 January 2006).
  27. M. Doi and S. F. Edward, Theory of Polymer Dynamics (Oxford University Press, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited