OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 28 — Oct. 1, 2006
  • pp: 7529–7537

Simultaneous extraction of optical transport parameters and intrinsic fluorescence of tissue mimicking model media using a spatially resolved fluorescence technique

Sharad Gupta, V. L. N. Sridhar Raja, and Asima Pradhan  »View Author Affiliations


Applied Optics, Vol. 45, Issue 28, pp. 7529-7537 (2006)
http://dx.doi.org/10.1364/AO.45.007529


View Full Text Article

Enhanced HTML    Acrobat PDF (166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method based on spatially resolved fluorescence measurement for the simultaneous estimation of optical transport parameters, namely, the reduced scattering coefficient ( μ s ) , the absorption coefficient ( μ a ) , and the intrinsic fluorescence spectra from turbid media. The accuracy of this approach was tested by conducting studies on a series of tissue-simulating phantoms with known optical transport properties. The estimated relative error in the values for μ s and μ a using this technique was found to be 10 % . Furthermore, the line shape and intensity of the intrinsic fluorescence recovered by using this approach were observed to be free from the distorting effects of the wavelength-dependent absorption and scattering properties of the medium, and they were in excellent agreement with the directly measured intrinsic fluorescence spectra of the fluorophores.

© 2006 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.7050) Medical optics and biotechnology : Turbid media
(290.1990) Scattering : Diffusion
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: November 4, 2005
Manuscript Accepted: April 25, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Sharad Gupta, V. L. N. Sridhar Raja, and Asima Pradhan, "Simultaneous extraction of optical transport parameters and intrinsic fluorescence of tissue mimicking model media using a spatially resolved fluorescence technique," Appl. Opt. 45, 7529-7537 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-28-7529


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Kortum and E. Servick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 556-606 (1996).
  2. G. A. Wagnieres, W. M. Star, and B. C. Wilson, "In vivo fluorescence spectroscopy and imaging for oncological applications," Photochem. Photobiol. 68, 603-632 (1998). [CrossRef]
  3. N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia , 2, 1-29 (2000). [CrossRef]
  4. R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. J. Choy, and E. Opher, "Fluorescence spectra from malignant and normal human breast and lung tissues," IEEE J. Quantum Electron. QE-23, 1806-1811 (1987). [CrossRef]
  5. R. R. Alfano, A. Pradhan, G. C. Tang, and S. J. Wahl, "Optical spectroscopic diagnosis of cancer and normal breast tissues," J. Opt. Soc. Am. B 6, 1015-1023 (1989).
  6. N. Ramanujam, M. Follen-Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, A. Atkinson, and R. Richards-Kortum, "Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths," Photochem. Photobiol. 64, 720-735 (1996).
  7. A. S. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, A. R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, "Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and method of data analysis," Appl. Spectrosc. 53, 302-311 (1999). [CrossRef]
  8. N. Ramanujam, "Fluorescence spectroscopy in vivo," inEncyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2001), pp. 20-56.
  9. N. Agrawal, S. Gupta, Bhawna, A. Pradhan, K. Viswanathan, and P. K. Panigrahi, "Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors," IEEE J. Sel. Top. Quantum Electron. 9, 154-161 (2003). [CrossRef]
  10. S. K. Majumder, N. Ghosh, and P. K. Gupta, "Support vector machine for optical diagnosis of cancer," J. Biomed. Opt. 10, 24034 (2005). [CrossRef]
  11. J. Swartling, J. Svensson, D. Bengtsson, K. Terike, and S. Andersson-Engels, "Fluorescence spectra provide information on the depth of fluorescent lesions in tissue," Appl. Opt. 44, 1934-1941 (2005). [CrossRef]
  12. M. Keijzer, R. Richards-Kortum, S. L. Jacques, and M. S. Feld, "Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta," Appl. Opt. 28, 4286-4292 (1989).
  13. A. J. Durkin, S. Jaikumar, N. Ramanujam, and R. Richards-Kortum, "Relation between fluorescence-spectra of dilute and turbid samples," Appl. Opt. 33, 414-423 (1994).
  14. A. J. Durkin and R. Richard-Kortum, "Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples," Lasers Surg. Med. 19, 75-89 (1996). [CrossRef]
  15. C. M. Gardner, S. L. Jacques, and A. J. Welch, "Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence," Appl. Opt. 35, 1780-1792 (1996).
  16. A. J. Welch, C. M. Gardner, R. R. Kortum, E. Chan, G. Criswell, J. Pferer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997). [CrossRef]
  17. B. W. Pogue and G. Burke, "Fiber-optic bundle design for quantitative fluorescence measurement from tissue," Appl. Opt. 37, 7429-7435 (1998).
  18. J. Y. Qu, Z. Huang, and J. Hua, "Excitation-and-collection geometry insensitive fluorescence imaging of tissue-simulating turbid media," Appl. Opt. 39, 3344-3356 (2000).
  19. J. Wu, M. S. Feld, and R. P. Rava, "Analytical model for extracting intrinsic fluorescence in turbid media" Appl. Opt. 32, 3585-3595 (1993).
  20. Q. Zhang, M. G. Muller, J. Wu, and M. S. Feld, "Turbidity-free fluorescence spectroscopy of biological tissue," Opt. Lett. 25, 1451-1453 (2000).
  21. M. G. Muller, I. Gergakoudi, Q. Zhang, J. Wu, and M. S. Feld, "Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption," Appl. Opt. 40, 4633-4646 (2001).
  22. N. C. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, "Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach," Opt. Express 11, 3320-3330 (2003).
  23. M. S. Nair, N. Ghosh, N. S. Raju, and A. Pradhan, "Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model," Appl. Opt. 41, 4024-4034 (2002).
  24. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic 1978), Vol. 1.
  25. T. J. Farrel, B. C. Wilson, and M. S. Patterson, "The use of neural network to determine tissue optical properties from diffuse reflectance measurements," Phys. Med. Biol. 37, 2281-2286 (1992). [CrossRef]
  26. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996).
  27. C. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  28. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited