OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 28 — Oct. 1, 2006
  • pp: 7538–7542

Fiber-optic fluorescence correlation spectrometer

Kanchan Garai, Mohan Muralidhar, and Sudipta Maiti  »View Author Affiliations

Applied Optics, Vol. 45, Issue 28, pp. 7538-7542 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (142 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorescence correlation spectroscopy (FCS) is a sensitive technique used to probe size, concentration, flow velocity, and reaction kinetics in a dilute solution. Conventional FCS spectrometers achieve this sensitivity at the cost of using bulky optics. We demonstrate a technique that utilizes a single-mode optical fiber of 3.3 μ m mode field diameter to perform FCS measurements. We demonstrate that the technique has adequate sensitivity to perform FCS measurements on fluorescent beads of 13   nm radius, and that the results agree with theoretical predictions. Our method potentially allows FCS to be extended to remote and in vivo applications.

© 2006 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 14, 2005
Revised Manuscript: March 16, 2006
Manuscript Accepted: May 18, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

Kanchan Garai, Mohan Muralidhar, and Sudipta Maiti, "Fiber-optic fluorescence correlation spectrometer," Appl. Opt. 45, 7538-7542 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Magde, E. Elson, and W. Webb, "Thermodynamic fluctuations in a reacting system--measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972). [CrossRef]
  2. S. Maiti, U. Haupts, and W. W. Webb, "Fluorescence correlation spectroscopy: diagnostics for sparse molecules," Proc. Natl. Acad. Sci. U.S.A. 94, 11753-11757 (1997). [CrossRef] [PubMed]
  3. P. Sengupta, J. Balaji, and S. Maiti, "Measuring diffusion in cell membranes by fluorescence correlation spectroscopy," Methods 27, 374-387 (2002). [CrossRef] [PubMed]
  4. O. S. Wolfbeis, "Fiber-optic chemical sensors and biosensors," Anal. Chem. 76, 3269-3283 (2004). [CrossRef] [PubMed]
  5. A. Zauner, R. Bullock, X. Di, and H. F. Young, "Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain," Neurosurgery 37, 1168-1177 (1995). [CrossRef] [PubMed]
  6. B. Kuswandi, "Simple optical fibre biosensor based on immobilised enzyme for monitoring of trace heavy metal ions," Anal. Bioanal. Chem. 376, 1104-1110 (2003). [CrossRef] [PubMed]
  7. K. Mitsubayashi, T. Kon, and Y. Hashimoto, "Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber," Biosens. Bioelectron. 19, 193-198 (2003). [CrossRef] [PubMed]
  8. P. M. Schmidt, C. Lehmann, E. Matthes, and F. F. Bier, "Detection of activity of telomerase in tumor cells using fiber optical biosensors," Biosens. Bioelectron. 17, 1081-1087 (2002). [CrossRef] [PubMed]
  9. U. Willer, D. Scheel, I. Kostjucenko, C. Bohling, W. Schade, and E. Faber, "Fiber-optic evanescent-field laser sensor for in situ gas diagnostics," Spectrochim. Acta Part A 58, 2427-2432 (2002). [CrossRef]
  10. J. Balaji, K. Garai, S. Chakrabarti, and S. Maiti, "Axial resolution limit of a fiber-optic fluorescence probe," Appl. Opt. 42, 3780-3784 (2003). [CrossRef] [PubMed]
  11. D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938-1945 (1974). [CrossRef]
  12. N. L. Thompson, Topics in Fluorescence Spectroscopy, Fluorescence Correlation Spectroscopy (Plenum, 1991), Vol. 1, pp. 337-378.
  13. J. Mertz, C. Xu, and W. W. Webb, "Single-molecule detection by two-photon-excited fluorescence," Opt. Lett. 20, 2532-2534 (1995). [CrossRef] [PubMed]
  14. P. Sengupta, K. Garai, J. Balaji, N. Periasamy, and S. Maiti, "Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy," Biophys. J. 84, 1977-1984 (2003). [CrossRef] [PubMed]
  15. D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, "Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex," Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741-15746 (1998). [CrossRef]
  16. D. Hodeige, M. de Pauw, W. Eechaute, J. Weyne, and G. R. Heyndrickx, "On the validity of blood flow measurement using colored microspheres," Am. J. Physiol. 276, H1150-H1158 (1999). [PubMed]
  17. M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor nanocrystals as fluorescent biological labels," Science 281, 2013-2016 (1998). [CrossRef] [PubMed]
  18. W. C. Chan and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281, 2016-2018 (1998). [CrossRef] [PubMed]
  19. A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, "Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors," J. Am. Chem. Soc. 126, 301-310 (2004). [CrossRef] [PubMed]
  20. R. Robelek, L. Niu, E. L. Schmid, and W. Knoll, "Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry," Anal. Chem. 76, 6160-6165 (2004). [CrossRef] [PubMed]
  21. X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited