OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 29 — Oct. 10, 2006
  • pp: 7617–7621

Experimental observation of photonic and polaritonic gaps in a silica opal

Herman Högström and Carl G. Ribbing  »View Author Affiliations


Applied Optics, Vol. 45, Issue 29, pp. 7617-7621 (2006)
http://dx.doi.org/10.1364/AO.45.007617


View Full Text Article

Enhanced HTML    Acrobat PDF (538 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experimental observations of the simultaneous presence of a polaritonic and a photonic gap in a three-dimensional photonic crystal is reported, to the best of our knowledge, for the first time. The photonic crystal was made of monodispersed silica microspheres sedimented into a face-centered-cubic structure. Silica has a polaritonic gap for wavelengths between 8 and 9.35 μm . Four different sphere sizes were used, with diameters of d = 0.49 , 0.73, 0.99, and 1.57 μm . The photonic crystals were studied by normal incidence infrared reflectance measurements in the wavelength interval 0.8 12 μm . Four peaks with the a magnitude of 0.6 , originating from the periodicity of the crystal, were recorded in the interval between 1 and 4 μm. Another peak, the polaritonic reflectance peak ( 0.4 ) , is observed for wavelengths around 9 μm for all four crystals.

© 2006 Optical Society of America

OCIS Codes
(160.3220) Materials : Ionic crystals
(160.4670) Materials : Optical materials
(160.6030) Materials : Silica
(350.2770) Other areas of optics : Gratings

History
Original Manuscript: March 1, 2006
Revised Manuscript: May 8, 2006
Manuscript Accepted: May 17, 2006

Citation
Herman Högström and Carl G. Ribbing, "Experimental observation of photonic and polaritonic gaps in a silica opal," Appl. Opt. 45, 7617-7621 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-29-7617


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. F. Klingshirn, Semiconductor Optics, 2nd ed. (Springer-Verlag, 2005).
  2. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996).
  3. M. Theiss, Scout: Hard- and Software for Optical Spectroscopy, Aachen, 2002.
  4. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks/Cole, 1976).
  5. C. G. Ribbing and E. Wäckelgård, "Reststrahlen bands as property indicators for materials in dielectric coatings," Thin Solid Films 206, 312-317 (1991). [CrossRef]
  6. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Molding the Flow of Light (Princeton U. Press, 1995).
  7. K. Sakoda, Optical Properties of Photonic Crystals, Vol. 80 of Springer Series in Optical Sciences (Springer, 2001).
  8. N. Bloembergen and A. J. Sievers, "Nonlinear optical properties of periodic laminar structures," Appl. Phys. Lett. 17, 483-486 (1970). [CrossRef]
  9. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  10. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  11. J. Dowling, "Photonic and sonic bandgap bibliography," http://home.earthlink.net/∼jpdowling/pbgbib.html#R.
  12. V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, "One-dimensional photonic crystal obtained by vertical anisotropic etching of silicon," Semiconductors 36, 932-935 (2002). [CrossRef]
  13. M. Notomi, K. Yamada, A. Shinya, J. Takahasi, C. Takahasi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  14. S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998). [CrossRef]
  15. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B 52, 11744-11751 (1995). [CrossRef]
  16. M. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, "Photonic band gaps and defects in two dimensions: studies of the tranmission coefficient," Phys. Rev. B 48, 14121-14126 (1993). [CrossRef]
  17. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, "Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials," Phys. Rev. B 49, 11080-11087 (1994). [CrossRef]
  18. W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, "Photonic band structures of a two-dimensional ionic dielectric medium," Phys. Rev. B 54, 10280-10283 (1996). [CrossRef]
  19. W. Zhang, A. Hu, and N. Ming, "The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media," J. Phys: Condens. Matter 9, 541-549 (1997). [CrossRef]
  20. V. Kuzmiak, A. A. Maradudin, and A. R. McGurn, "Photonic band structures of two-dimensional systems fabricated from rods of cubic polar crystal," Phys. Rev. B 55, 4298-4311 (1997). [CrossRef]
  21. O. Toader and S. John, "Photonic band gap enhancement in frequency-dependent dielectrics," Phys. Rev. E 70, 046605 (2004).
  22. K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, "Field expulsion and reconfiguration in polaritonic photonic crystals," Phys. Rev. Lett. 90, 196402 (2003).
  23. A. Rung, "Destruction of a polaritonic gap in a 2D photonic crystal," Opt. Commun. 252, 329-335 (2005). [CrossRef]
  24. K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85, 543-545 (2004). [CrossRef]
  25. R. Moussa, L. Salomon, F. De-Fornel, J. P. Dufour, and H. Aourag, "Photonic band gaps in highly ionic medium: CuCl, CuBr, CuI," Infrared Phys. Technol. 44, 27-34 (2003). [CrossRef]
  26. G. Gantzounis and N. Stefanou, "Theoretical analysis of three-dimensional polaritonic photonic crystals," Phys. Rev. B 72, 075107 (2005).
  27. H. Högström and C. G. Ribbing, "Polaritonic and photonic gaps in SiO2/Si and SiO2/air periodic structures," Photonics Nanostruc. Fundam. Appl. 2, 23-32 (2004). [CrossRef]
  28. S. H. Park, B. Gates, and Y. Xia, "A three-dimensional photonic crystal operating in the visible region," Adv. Mater. 11, 462-466 (1999). [CrossRef]
  29. H. Högström and C. G. Ribbing, "A three-dimensional photonic crystal with a polaritonic gap," presented at the International Symposium on Photonic and Electromagnetic Crystal Structures, Crete, Greece, 19-24 June 2005.
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  31. Duke Scientific, www.dukescientific.com.
  32. Trafomo AB, Sweden, www.trafomo.se.
  33. Y. Lu, Y. Yin, B. Gates, and Y. Xia, "Growth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods," Langmuir 17, 6344-6350 (2001). [CrossRef]
  34. P. A. Hiltner and I. M. Krieger, "Diffraction of light by ordered suspensions," J. Phys. Chem. 73, 2386-2389 (1969). [CrossRef]
  35. H. Högström, G. Forssell, and C. G. Ribbing, "Realization of selective low emittance in both thermal atmospheric windows," Opt. Eng. 44, 026001 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited