OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 29 — Oct. 10, 2006
  • pp: 7661–7666

Optimization of a thick polyvinyl alcohol–acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing

Elena Fernández, Celia García, Inmaculada Pascual, Manuel Ortuño, Sergi Gallego, and Augusto Beléndez  »View Author Affiliations


Applied Optics, Vol. 45, Issue 29, pp. 7661-7666 (2006)
http://dx.doi.org/10.1364/AO.45.007661


View Full Text Article

Enhanced HTML    Acrobat PDF (400 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The capability of polyvinyl alcohol–acrylamide photopolymer materials to obtain angularly multiplexed holographic gratings has been demonstrated [Appl. Phys. B 76, 851 (2003)]. A combination of two multiplexing methods—peristrophic and angular multiplexing—is used to record 60 holograms. An exposure schedule method is used to optimize the capability of the photopolymerizable holographic material and obtain holograms with a higher, more uniform diffraction efficiency. In addition, because of this exposure schedule method, the entire dynamic range (M#) of the material will be exploited, obtaining values of approximately M # 9 in layers approximately 800 μ m thick.

© 2006 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials
(090.4220) Holography : Multiplex holography

History
Original Manuscript: February 7, 2006
Revised Manuscript: May 5, 2006
Manuscript Accepted: June 12, 2006

Citation
Elena Fernández, Celia García, Inmaculada Pascual, Manuel Ortuño, Sergi Gallego, and Augusto Beléndez, "Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing," Appl. Opt. 45, 7661-7666 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-29-7661


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Pu and D. Psaltis, "High-density recording in photopolymer-based holographic three-dimensional disks," Appl. Opt. 35, 2389-2398 (1996). [CrossRef] [PubMed]
  2. O. Graydon, "Holographic storage turns blue," Opto. Laser Europe 125, 7 (2005).
  3. A. H. Tullo, "Data storage in 3-D," Chem. Eng. News 83, 31-32 (2005).
  4. M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic storage media for practical systems," in Practical Holography XVII and Holographic Materials IX, T. H. Jeong, ed., Proc SPIE 5005, 29-37 (2003).
  5. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, "Microholographic optical disk data storage," Appl. Opt. 44, 3197-3207 (2005). [CrossRef] [PubMed]
  6. K. Y. Hsu, S. H. Lin, and Y.-N. Hsiao, "Experimental characterization of phenanthrenequinode-doped poly(methyl methacrylate) photopolymer for volume holographic storage," Opt. Eng. 42, 1390-1396 (2003). [CrossRef]
  7. K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High holographic data storage at 100 Gbits/μin2" (2005), http://www.inphase-technologies.com/technology/whitepapers/pdfs/highlowbarspeedlowbardatalowbarstorage.pdf.
  8. G. J. Steckman, A. Pu, and D. Psaltis, "Storage density of shift-multiplexed holographic memory," Appl. Opt. 40, 3387-3394 (2001). [CrossRef]
  9. M. Ortuño, S. Gallego, C García, C Neipp, A Beléndez, and I. Pascual, "Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003). [CrossRef]
  10. H. Sherif, I. Naydenova, S. Martin, and C. McGinn, "Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing," J. Opt. A , Pure Appl. Opt. 7, 255-260 (2005). [CrossRef]
  11. I. El Hafidi, R. Grzymala, R. Kiefer, L. Elouad, and P. Meyrueis, "Optical data storage on protein using angular multiplexing," Opt. Laser Technol. 37, 503-508 (2005). [CrossRef]
  12. K. Curtis, A. Pu, and D. Psaltis, "Method for holographic storage using peristrophic multiplexing," Opt. Lett. 19, 993-994 (1994). [CrossRef] [PubMed]
  13. A. Pu, K. Curtis, and D. Psaltis, "Exposure schedule for multiplexing holograms in photopolymer films," Opt. Eng. 35, 2824-2828 (1996). [CrossRef]
  14. G. A. Rakuljic, V. Levya, and A. Yariv, "Optical data storage by using orthogonal wavelength-multiplexed volume holograms," Opt. Lett. 17, 1471-1473 (1992). [CrossRef] [PubMed]
  15. L. Cao, X. Ma, Q. He, H. Wu, and G. Jin, "Imaging spectral device based on multiple volume holographic gratings," Opt. Eng. 43, 2009-2016 (2004). [CrossRef]
  16. S. Gallego, M. Ortuño, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, "High-efficiency volume holograms recording on acrylamide and N,N'methilene-bis-acrylamide photopolymer with pulsed laser," J. Mod. Opt. 52, 1575-1584 (2005). [CrossRef]
  17. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Bélendez, and I. Pascual, "Characterization of polyvinyl alcohol/acrylamide holographic memories with a first-harmonic difusion model," Appl. Opt. 44, 6205-6210 (2005). [CrossRef] [PubMed]
  18. F. H. Mok, G. W. Burr, and D. Psaltis, "System metric for holographic memory systems," Opt. Lett. 21, 896-898 (1996). [CrossRef] [PubMed]
  19. S. Gallego, M. Ortuño, C. Neipp, A. Marquez, A. Belendez, I. Pascual, J. V. Kelly, and J. T. Sheridan, "Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers," Opt. Express 13, 1939-1947 (2005). [CrossRef] [PubMed]
  20. A. Yan, S. Tao, D. Wang, M. Shi, and F. Wu, "Multiplexing holograms in the photopolymer with equal diffraction efficiency," in Advances in Optical Data Storage, Technology, D. Xu, K. A. Schouhamer Immink, and K. Shono, eds., Proc SPIE 5643, 109-117 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited