OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 3 — Jan. 20, 2006
  • pp: 451–459

Digital holographic microscopy with dual-wavelength phase unwrapping

Daniel Parshall and Myung K. Kim  »View Author Affiliations


Applied Optics, Vol. 45, Issue 3, pp. 451-459 (2006)
http://dx.doi.org/10.1364/AO.45.000451


View Full Text Article

Enhanced HTML    Acrobat PDF (1987 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We apply the techniques of digital holography to obtain microscopic three-dimensional images of biological cells. The optical system is capable of microscopic holography with diffraction-limited resolution by projecting a magnified image of a microscopic hologram plane onto a CCD plane. Two-wavelength phase-imaging digital holography is applied to produce unwrapped phase images of biological cells. The method of three-wavelength phase imaging is proposed to extend the axial range and reduce the effect of phase noise. These results demonstrate the effectiveness of digital holography in high-resolution biological microscopy.

© 2006 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(100.5070) Image processing : Phase retrieval
(110.0180) Imaging systems : Microscopy

ToC Category:
Microscopy

Virtual Issues
Vol. 1, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Daniel Parshall and Myung K. Kim, "Digital holographic microscopy with dual-wavelength phase unwrapping," Appl. Opt. 45, 451-459 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-3-451


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Seebacher, W. Osten, and W. Jueptner, "Measuring shape and deformation of small objects using digital holography," in Laser Interferometry IX: Applications, R. J. Pryputniewicz, G. M. Brown, and W. P. O. Jueptner, eds., Proc. SPIE 3479, 104-115 (1998). [CrossRef]
  2. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, "Fourier-transform holographic microscope," Appl. Opt. 31, 4973-4978 (1992). [CrossRef] [PubMed]
  3. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999). [CrossRef]
  4. D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H. H. Scheld, and G. von Bally, "Lensless Fourier holography for digital holographic interferometry on biological samples," Opt. Lasers Eng. 36, 241-249 (2001). [CrossRef]
  5. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11,301-11,305 (2001). [CrossRef]
  6. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, "Image formation in phase-shifting digital holography and applications to microscopy," Appl. Opt. 40, 6177-6686 (2001). [CrossRef]
  7. U. Schnars, "Direct phase determination in hologram interferometry with use of digitally recorded holograms," J. Opt. Soc. Am. A 11, 2011-2015 (1994). [CrossRef]
  8. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999). [CrossRef]
  9. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, "Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy," Opt. Lett. 30, 468-470 (2005). [CrossRef] [PubMed]
  10. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, "Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging," Appl. Opt. 42, 1938-1946 (2003). [CrossRef] [PubMed]
  11. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, "Whole optical wave fields reconstruction by digital holography," Opt. Express 9, 294-302 (2001). [CrossRef] [PubMed]
  12. U. Schnars and W. P. O. Jueptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
  13. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, "Quantitative optical phase microscopy," Opt. Lett. 23, 817-819 (1998). [CrossRef]
  14. C. G. Rylander, D. Dave, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, "Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy," Opt. Lett. 29, 1509-1511 (2004). [CrossRef] [PubMed]
  15. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, "Fourier phase microscopy for investigation of biological structures and dynamics," Opt. Lett. 29, 2503-2505 (2004). [CrossRef] [PubMed]
  16. M. Servin, J. L. Marroquin, D. Malacara, and F. J. Cuevas, "Phase unwrapping with a regularized phase-tracking system," Appl. Opt. 37, 1917-1923 (1998). [CrossRef]
  17. M. A. Schofield and Y. Zhu, "Fast phase unwrapping algorithm for interferometric applications," Opt. Lett. 28, 1194-1196 (2003). [CrossRef] [PubMed]
  18. Y. Y. Cheng and J. C. Wyant, "Two-wavelength phase shifting interferometry," Appl. Opt. 23, 4539-4543 (1984). [CrossRef] [PubMed]
  19. K. Creath, "Step height measurement using two-wavelength phase-shifting interferometry," Appl. Opt. 26, 2810-2816 (1987). [CrossRef] [PubMed]
  20. J. Gass, A. Dakoff, and M. K. Kim, "Phase imaging without 2pi-ambiguity by multiple-wavelength digital holography," Opt. Lett. 28, 1141-1143 (2003). [CrossRef] [PubMed]
  21. I. Yamaguchi, T. Matsumura, and J. Kato, "Phase-shifting color digital holography," Opt. Lett. 27, 1108-1110 (2002). [CrossRef]
  22. J. Kato, I. Yamaguchi, and T. Matsumura, "Multicolor digital holography with an achromatic phase shifter," Opt. Lett. 27, 1403-1405 (2002). [CrossRef]
  23. N. Demoli, D. Vukicevic, and M. Torzynski, "Dynamic digital holographic interferometry with three wavelengths," Opt. Express 11, 767-774 (2003). [CrossRef] [PubMed]
  24. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  25. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997). [CrossRef] [PubMed]
  26. T. Zhang and I. Yamaguchi, "Three-dimensional microscopy with phase-shifting digital holography," Opt. Lett. 23, 1221-1223 (1998). [CrossRef]
  27. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, "Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms," Opt. Lett. 29, 854-856 (2004). [CrossRef] [PubMed]
  28. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, "Algorithm for reconstruction of digital holograms with adjustable magnification," Opt. Lett. 29, 1668-1670 (2004). [CrossRef] [PubMed]
  29. M. Jacquot, P. Sandoz, and G. Tribillon, "High resolution digital holography," Opt. Commun. 190, 87-94 (2001). [CrossRef]
  30. In principle, it is actually possible to extend the unambiguous axial range beyond beat wavelength Lambda12 by using two-wavelength phase imaging, though with a stricter requirement on the phase measurement accuracy; see P. de Groot, "Extending the unambiguous range of two-color interferometers," Appl. Opt. 33, 5948-5953 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited