OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 3 — Jan. 20, 2006
  • pp: 470–479

Dark-field imaging with cylindrical-vector beams

David P. Biss, Kathleen S. Youngworth, and Thomas G. Brown  »View Author Affiliations


Applied Optics, Vol. 45, Issue 3, pp. 470-479 (2006)
http://dx.doi.org/10.1364/AO.45.000470


View Full Text Article

Enhanced HTML    Acrobat PDF (1570 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dark-field illumination provides an imaging mode that rejects specular light, thereby highlighting edge features. We analyze dark-field imaging by using cylindrical vector beam illumination with a confocal microscope equipped with a microstructure fiber mode filter. A numerical model based on rigorous coupled-wave analysis has been used to analyze the method. We acquired images of separated edges features to investigate the edge separation resolution of the method. A through-focus comparison of azimuthal and radial polarization shows a measurable dependence of edge separation on polarization.

© 2006 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(180.0180) Microscopy : Microscopy
(260.5430) Physical optics : Polarization

ToC Category:
Microscopy

Virtual Issues
Vol. 1, Iss. 2 Virtual Journal for Biomedical Optics

Citation
David P. Biss, Kathleen S. Youngworth, and Thomas G. Brown, "Dark-field imaging with cylindrical-vector beams," Appl. Opt. 45, 470-479 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-3-470


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Inoué and R. Oldenbourg, "Microscopes," in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, 1995), Vol. 2, Chap. 17, p. 25.
  2. E. M. Slayter, Optical Methods in Biology (Wiley, 1970), pp. 318-340.
  3. Ref. , pp. 25-27.
  4. F. H. Smith, "Microscopic interferometry," Research 8, 385-395 (1955).
  5. T. Wilson, Confocal Microscopy (Academic, 1990), Chap. 1, pp. 1-20. [CrossRef]
  6. R. H. Webb, "Confocal optical microscopy," Rep. Prog. Phys. 59, 427-471 (1996). [CrossRef]
  7. D. G. Hall, "Vector-beam solutions of Maxwell's wave equation," Opt. Lett. 21, 9-11 (1996). [CrossRef] [PubMed]
  8. R. H. Jordan and D. G. Hall, "Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution," Opt. Lett. 19, 427-429 (1994). [CrossRef] [PubMed]
  9. K. Youngworth and T. Brown, "Focusing of high numerical aperture cylindrical vector beams," Opt. Express 7, 77-87 (2000). [CrossRef] [PubMed]
  10. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003); URL, http://link.aps.org/abstract/PRL/v91/e233901. [CrossRef] [PubMed]
  11. D. Biss and T. Brown, "Polarization vortex driven second harmonic generation," Opt. Lett. 28, 923-925 (2003). [CrossRef] [PubMed]
  12. D. Biss and T. Brown, "Cylindrical vector beam focusing through a dielectric interface," Opt. Express 9, 490-497 (2001). [CrossRef] [PubMed]
  13. A. van de Nes, P. Munro, S. Pereira, J. Braat, and P. Török, "Cylindrical vector beam focusing through a dielectric interface: comment," Opt. Express 12, 967-969 (2004). [CrossRef] [PubMed]
  14. D. P. Biss and T. Brown, "Cylindrical vector beam focusing through a dielectric interface: reply to comment," Opt. Express 12, 970-971 (2004). [CrossRef] [PubMed]
  15. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "The focus of light--theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).
  16. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000). [CrossRef]
  17. C. J. R. Sheppard and A. Choudhury, "Annular pupils, radial polarization, and superresolution," Appl. Opt. 43, 4322-4327 (2004). [CrossRef] [PubMed]
  18. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5253 (2001). [CrossRef] [PubMed]
  19. L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001). [CrossRef]
  20. K. S. Youngworth and T. G. Brown, "Inhomogeneous polarization in scanning optical microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VII, J. A. Conchello, C. J. Cogswell, A. G. Tescher, and T. Wilson, eds., Proc. SPIE 3919, 75-85 (2000). [CrossRef]
  21. K. S. Youngworth, D. P. Biss, and T. G. Brown, "Point spread functions for particle imaging using inhomogeneous polarization in scanning optical microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VIII, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4261, 14-23 (2001). [CrossRef]
  22. T. G. Brown, "Inhomogeneous polarization in optical system design," in International Optical Design Conference, P. K. Manhart and J. M. Sasian, eds., Proc. SPIE 4832, 198-205 (2002). [CrossRef]
  23. D. P. Biss, K. S. Youngworth, and T. G. Brown, "Longitudinal field imaging," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing X, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4964, 73-87 (2003). [CrossRef]
  24. T. Dabbs and M. Glass, "Fiber-optic confocal microscope: FOCON," Appl. Opt. 31, 3030-3035 (1992). [CrossRef] [PubMed]
  25. M. Gu, C. J. R. Sheppard, and X. Gan, "Image formation in a fiber-optical confocal scanning microscope," J. Opt. Soc. Am. A 8, 1755-1761 (1991). [CrossRef]
  26. J. T. Sheridan and C. J. R. Sheppard, "An examination of the theories for the calculation of diffraction by square-wave gratings. 1. Thickness and period variations for normal incidence," Optik (Weimar) 85, 25-32 (1990).
  27. D. Nyyssonen, "Theory of optical detection and imaging of thick layers," J. Opt. Soc. Am. 72, 1425-1436 (1982). [CrossRef]
  28. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71, 811-818 (1981). [CrossRef]
  29. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of grating diffraction--E-mode polarization and losses," J. Opt. Soc. Am. 73, 451-455 (1983). [CrossRef]
  30. M. G. Moharam and T. K. Gaylord, "Three-dimensional vector coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 73, 1105-1112 (1983). [CrossRef]
  31. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982). [CrossRef]
  32. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3, 1780-1787 (1986). [CrossRef]
  33. S. Peng and G. M. Morris, "Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings," J. Opt. Soc. Am. A 12, 1087-1096 (1995). [CrossRef]
  34. D. Biss and T. Brown, "Primary aberrations in focused radially polarized vortex beams," Opt. Express 12, 384-393 (2004). [CrossRef] [PubMed]
  35. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited