OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 3 — Jan. 20, 2006
  • pp: 546–557

Matrix form for the instrument line shape of Fourier-transform spectrometers yielding a fast integration algorithm to theoretical spectra

Raphaël Desbiens, Pierre Tremblay, Jérôme Genest, and Jean-Pierre Bouchard  »View Author Affiliations

Applied Optics, Vol. 45, Issue 3, pp. 546-557 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (997 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The instrument line shape (ILS) of a Fourier-transform spectrometer is expressed in a matrix form. For all line shape effects that scale with wavenumber, the ILS matrix is shown to be transposed in the spectral and interferogram domains. The novel representation of the ILS matrix in the interferogram domain yields an insightful physical interpretation of the underlying process producing self-apodization. Working in the interferogram domain circumvents the problem of taking into account the effects of finite optical path difference and permits a proper discretization of the equations. A fast algorithm in O ( N log 2 N ) , based on the fractional Fourier transform, is introduced that permits the application of a constant resolving power line shape to theoretical spectra or forward models. The ILS integration formalism is validated with experimental data.

© 2006 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:

Raphaël Desbiens, Pierre Tremblay, Jérôme Genest, and Jean-Pierre Bouchard, "Matrix form for the instrument line shape of Fourier-transform spectrometers yielding a fast integration algorithm to theoretical spectra," Appl. Opt. 45, 546-557 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Desbiens, J. Genest, and P. Tremblay, "Radiometry in line-shape modeling of Fourier-transform spectrometers," Appl. Opt. 41, 1424-1432 (2002). [CrossRef] [PubMed]
  2. J. Genest and P. Tremblay, "Instrument line shape of Fourier-transform spectrometers: analytic solutions for nonuniformly illuminated off-axis detectors," Appl. Opt. 38, 5438-5446 (1999). [CrossRef]
  3. K. W. Bowman, H. M. Worden, and R. Beer, "Instrument line-shape modeling and correction for off-axis detectors in Fourier-transform spectrometry," Appl. Opt. 39, 3765-3773 (2000). [CrossRef]
  4. F. Bouffard, P. Tremblay, R. Desbiens, and J.-P. Bouchard, "Synthetic spectra of Fourier transform spectrometers using analytically modeled instrument line shape inclusion," in Proceedings of the International Symposium on Spectral Sensing Research (ISSSR) (Science and Technology Corporation, 2001), pp. 326-335.
  5. E. Sarkissian and K. W. Bowman, "Application of a nonuniform spectral resampling transform in Fourier-transform spectrometry," Appl. Opt. 42, 1122-1131 (2003). [CrossRef] [PubMed]
  6. A. Vance, W. Bell, C. Paton-Walsh, and B. Jolliffe, "Fourier transform infra-red instrument line shape determination using an infra-red helium:neon laser and a low pressure gas cell," inPolar Stratospheric Ozone 1997, European Commission Air Pollution Research Rep. 66, Proceedings of the Fourth European Symposium on Polar Stratospheric Ozone, European Community (European Commission on Air Pollution, 1998), pp. 735-738.
  7. F. Hase, T. Blumenstock, and C. Paton-Walsh, "Analysis of the instrumental line shape of high-resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software," Appl. Opt. 38, 3417-3422 (1999). [CrossRef]
  8. R. D. Kaiser, "Wavelength calibration and instrument line shape estimation of a LWIR hyperspectral sensor from in-scene data [4049-28]," in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen and M. R. Descour, eds., Proc. SPIE. 4049, 284-287 (2000). [CrossRef]
  9. S. Ichizawa, K. Kondo, M. Suzuki, H. Shimoda, and T. Ogawa, "Improvement of instrument line shape of IMG," in Infrared Spaceborne Remote Sensing IX, M. Strojnik and B. F. Andresen, eds., Proc. SPIE 4486, 326-333 (2002). [CrossRef]
  10. P. Raspollini, P. Ade, B. Carli, and M. Ridolfi, "Correction of instrument line-shape distortions in Fourier transform spectroscopy," Appl. Opt. 37, 3697-3704 (1998). [CrossRef]
  11. M. Ahro, J. Kauppinen, and I. Salomaa, "Detection and correction of instrumental line-shape distortions in Fourier spectroscopy," Appl. Opt. 39, 6230-6237 (2000). [CrossRef]
  12. F. Bouffard, "Une approche matricielle pour la modélisation et la correction des effets instrumentaux en spectrométrie par transformation de Fourier," master's degree dissertation (Université Laval, 2002).
  13. R. Desbiens, P. Tremblay, and J. Genest, "Matrix algorithm for integration and inversion of instrument line shape," in Fourier Transform Spectroscopy, Vol. 84 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 42-44.
  14. C. Cohen-Tannoudji, F. Laloë, and B. Diu, Mécanique Quantique (Hermann, 1996), Vol. 1.
  15. J. Connes, "Domaine d'utilisation de la méthode par transformée de Fourier," J. Phys. Radium 19, 197-208 (1958). [CrossRef]
  16. E. Niple, A. Pires, and K. Poultney, "Exact modeling of lineshape and wavenumber variations for off-axis detectors in Fourier transform spectrometers (FTS) sensor systems," in Technologies of Cryogenically Cooled Sensors and Fourier Transform Spectrometers II, R. J. Huppi, ed., Proc. SPIE 0364, 11-20 (1982).
  17. J. Kauppinen and P. Saarinen, "Line-shape distortions in misaligned cube corners interferometers," Appl. Opt. 31, 69-74 (1992). [CrossRef] [PubMed]
  18. J. Genest and P. Tremblay, "Impact of the optical aberrations on the line shape of Fourier-transform spectrometers," Vibrational Spectrosc. 29(1-2), 1-13 (2002).
  19. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, 1992).
  20. D. H. Bailey and P. N. Swarztrauber, "The fractional Fourier transform and applications," SIAM Rev. 33, 389-404 (1991). [CrossRef]
  21. D. H. Bailey and P. N. Swarztrauber, "Errata for: The fractional Fourier transform and applications," http://crd.1b1.gov/∼dhbailey/dhbpapers/.
  22. D. H. Bailey and P. N. Swarztrauber, "A fast method for the numerical evaluation of continuous Fourier transforms," SIAM J. Sci. Comput. 15, 1105-1110 (1994). [CrossRef]
  23. L. I. Bluestein, "A linear filtering approach to the computation of discrete Fourier transform," IEEE Trans. Audio Electroacoust. 18, 451-455 (1970). [CrossRef]
  24. J.-P. Bouchard, "Étude expérimentale de la forme de raie des spectromètres par transformation de Fourier," Ph.D. dissertation (Université Laval, 2004).
  25. J.-P. Bouchard, P. Tremblay, R. Desbiens, and F. Bouffard, "Detailed line-shape measurements using a high resolution, high divergence Fourier transform spectrometer," in Fourier Transform Spectroscopy, Vol. 84 of OSA Trends in Optics and Photonics series (Optical Society of America, 2003), pp. 25-27.
  26. M. Chamberland, V. Farley, L. Belhumeur, F. Williams, J. Lawrence, P. Tremblay, and R. Desbiens, "The Instrument LineShape, an imperative parameter for the absolute spectral calibration of an FTS," in Fourier Transform Spectroscopy, Vol. 84 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 160-166.
  27. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-M. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, and K. Yoshino, "HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition," J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998). [CrossRef]
  28. L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001," J. Quant. Spectrosc. Radiat. Transfer 82, 5-44 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited