OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 3 — Jan. 20, 2006
  • pp: 558–564

Tunable ultrafast infrared∕visible laser to probe vibrational dynamics

Tissa C. Gunaratne, Matthew Milliken, J. Reddy Challa, and M. Cather Simpson  »View Author Affiliations


Applied Optics, Vol. 45, Issue 3, pp. 558-564 (2006)
http://dx.doi.org/10.1364/AO.45.000558


View Full Text Article

Enhanced HTML    Acrobat PDF (662 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tunable, ultrafast ( 100   fs 1   ps ) laser system generating mid-IR ( 3 1 0 μ m ) and UV∕visible ( 392 417   nm, 785 835   nm) radiation is described and its output characterized. The system is designed to explore vibrational dynamics in the condensed phase in a direct, two-pulse, time-resolved manner, using Raman spectroscopy as the probe. To produce vibrational resolution, probe pulses are spectrally narrowed by use of a long doubling crystal. Frequency-resolved optical gating is used to evaluate beam characteristics. An effective method for determining the temporal overlap of the pump and probe pulses for a one-color, 400   nm configuration is illustrated. Representative results from studies of heme and para-nitroaniline vibrational dynamics illustrate the effectiveness of the visible pump–visible probe portion of the system in illuminating fast structure and energy dynamics.

© 2006 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(300.0300) Spectroscopy : Spectroscopy
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Spectroscopy

Citation
Tissa C. Gunaratne, Matthew Milliken, J. Reddy Challa, and M. Cather Simpson, "Tunable ultrafast infrared/visible laser to probe vibrational dynamics," Appl. Opt. 45, 558-564 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-3-558


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Seilmeier and W. Kaiser, in Ultrashort Laser Pulses and Applications, W.Kaiser, ed. (Springer-Verlag, 1988), pp. 279-317. [CrossRef]
  2. J. C. Owrutsky, D. Raftery, and R. M. Hochstrasser, "Vibrational relaxation dynamics in solutions," Annu. Rev. Phys. Chem. 45, 519-555 (1994). [CrossRef] [PubMed]
  3. A. Pakoulev, Z. Wang, Y. Pang, and D. D. Dlott, "Vibrational energy relaxation pathways of water," Chem. Phys. Lett. 380, 404-410 (2003). [CrossRef]
  4. T. Schrader, A. Sieg, F. Koller, W. Schreier, Q. An, W. Zinth, and P. Gilch, "Vibrational relaxation following ultrafast internal conversion: comparing IR and Raman probing," Chem. Phys. Lett. 392, 358-364 (2004). [CrossRef]
  5. H. Graener, T. Patzlaff, K. Paradowska-Moszkowska, and G. Seifert, "Intermolecular exchange of vibrational population in a binary liquid mixture," J. Chem. Phys. 119, 8537-8541 (2003). [CrossRef]
  6. V. Kozich, W. Werncke, J. Dreyer, K.-W. Brzezinka, M. Rini, A. Kummrow, and T. Elsaesser, "Vibrational excitation and energy redistribution after ultrafast internal conversion in 4-nitroaniline," J. Chem. Phys. 117, 719-726 (2002). [CrossRef]
  7. M. F. Kropman and H. J. Bakker, "Effect of ions on the vibrational relaxation of liquid water," J. Am. Chem. Soc. 126, 9135-9141 (2004). [CrossRef] [PubMed]
  8. T. Gunaratne, R. Challa, and M. C. Simpson, "Energy flow in push-pull molecules. Vibrational dynamics in para-nitroaniline," Chem. Phys. Chem. 6, 1157-1163 (2005). [CrossRef] [PubMed]
  9. Y. Mizutani and T. Kitagawa, "Direct observation of cooling of heme upon photodissociation of carbonmonoxy myoglobin," Science 278, 443-446 (1997). [CrossRef] [PubMed]
  10. Z. Wang, A. Pakoulev, and D. D. Dlott, "Watching vibrational energy transfer in liquids with atomic spatial resolution," Science 296, 2201-2203 (2002). [CrossRef] [PubMed]
  11. J. C. Deak and L. K. Iwaki, "Vibrational energy redistribution in polyatomic liquids: ultrafast IR-Raman spectroscopy of acetonitrile," J. Phys. Chem. A 102, 8193-8201 (1998). [CrossRef]
  12. J. C. Deak, L. K. Iwaki, and D. D. Dlott, "Vibrational energy redistribution in polyatomic liquids: ultrafast IR-Raman spectroscopy of nitromethane," J. Phys. Chem. A 108, 971-979 (1999). [CrossRef]
  13. L. K. Iwaki and D. D. Dlott, "Three-dimensional spectroscopy of vibrational energy relaxation in liquid methanol," J. Phys. Chem. A 104, 9101-9112 (2000). [CrossRef]
  14. M. Hoffmann and H. Graener, "Time resolved incoherent anti-Stokes Raman spectroscopy of dichloromethane," Chem. Phys. 206, 129-137 (1996). [CrossRef]
  15. V. Kozich, W. Werncke, A. I. Vodchits, and J. Dreyer, "Ultrafast excitation of out-of-plane vibrations and vibrational energy redistribution after internal conversion of 4-nitroaniline," J. Chem. Phys. 118, 1808-1814 (2003). [CrossRef]
  16. S. Hassig and O. S. Mortensen. "Kramers-Kronig relations and resonance Raman scattering," J. Chem. Phys. 73, 1078-1083 (1980). [CrossRef]
  17. B. R. Stallard, P. R. Callis, P. M. Champion, and A. C. Albrecht, "Application of the transform theory to resonance Raman excitation profiles in the soret region of cytochrome c," J. Chem. Phys. 80, 70-82 (1984). [CrossRef]
  18. J. J. Loparo, C. M. Cheatum, M. R. Ondrias, and M. C. Simpson. "Transient Raman observations of heme vibrational dynamics in five-coordinate iron porphyrins," Chem. Phys. 286, 353-374 (2003). [CrossRef]
  19. F. Seifert, V. Petrov, and M. Woerner, "Solid-state laser system for the generation of midinfrared femtosecond pulses tunable from 3.3 to 10 mm," Opt. Lett. 19, 2009-2011 (1994). [CrossRef] [PubMed]
  20. A. Shreve, B. Dyer, and W. Woodruff, Los Alamos National Laboratory, Los Alamos, N. M. 8754 (personal communication, 1997).
  21. D. C. Hanna, V. Rampal and R. C. Smith, "Tunable infrared down-conversion in silver thiogallate," Opt. Commun. 8, 151-153 (1973). [CrossRef]
  22. B. Y. Kohler, V. V. Yakovlev, K. R. Wilson, J. Squier, K. W. DeLong, and R. Trebino, "Intensity and phase measurements of femtosecond pulses from a chirped-pulse amplifier," in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, and A. H. Zewail, eds., Vol. 60. Springer Series in Chemical Physics (Springer-Verlag, 1994), pp. 147-148. [CrossRef]
  23. D. N. Fittinghoff, R. Trebino, J. Bowie, J. N. Sweetser, M. A. Krumbuegel, K. W. DeLong, and I. A. Walmsley, "Practical advances in ultrashort pulse measurement using frequency-resolved optical gating," in Generation, Amplification, and Measurement of Ultrashort Lasers Pulses III, W. White and D. H. Reit, eds. Proc. SPIE 2701, 118-125 (1996). [CrossRef]
  24. D. N. Fittinghoff, K. W. DeLong, R. Trebino, and C. L. Ladera, "Noise sensitivity in frequency-resolved optical-gating measurements of ultrashort pulses," J. Opt. Soc. Am. B 12, 1955-1967 (1995). [CrossRef]
  25. K. W. De Long, D. N. Eittinghoff, R. Trebino, A. Sullivan, J. Hunter, W. E. White, and D. J. Kane, "Frequency-resolved optical gating: measuring the intensity and phase of an ultrashort laser pulse," in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, and A. H. Zewail, eds., Vol. 60, Springer Series in Chemical Physics (Springer-Verlag, 1994), pp. 127-131.
  26. K. W. De Long, D. N. Fittinghoff, and R. Trebino, "Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating," IEEE J. Quantum Electron. 32, 1253-1264 (1996). [CrossRef]
  27. K. W. De Long, R. Trebino, J. Hunter, and W. E. White, "Frequency-resolved optical gating with the use of second-harmonic generation," J. Opt. Soc. Am. B 11, 2206-2215 (1994). [CrossRef]
  28. K. W. De Long, R. Trebino, and D. J. Kane, "Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries," J. Opt. Soc. Am. B 11, 1595-1608 (1994). [CrossRef]
  29. Y. Huang and J. B. Hopkins, "Femtosecond resonance Raman investigation of four univalent bipyridinium radicals," J. Phys. Chem. 100, 9585-9591 (1996). [CrossRef]
  30. If the fluxes are different, the minimum will not be at Deltat = 0. This is easily accounted for by use of the relative fluxes of the pump and probe to evaluate the two halves of the dynamics (Deltat < 0 and Deltat > 0).
  31. X. Ye, A. Demidov, F. Rosca, W. Wang, A. Kumar, D. Ionascu, L. Zhu, D. Barrick, D. Wharton, and P. M. Champion, "Investigations of heme protein absorption line shapes, vibrational relaxation, and resonance Raman scattering on ultrafast time scales," J. Phys. Chem. A 107, 8156-8165 (2003). [CrossRef]
  32. M. C. Simpson, E. S. Peterson, C. F. Shannon, D. D. Eads, J. M. Friedman, C. M. Cheatum, and M. R. Ondrias, "Transient Raman observations of heme electronic and vibrational photodynamics in deoxyhemoglobin," J. Am. Chem. Soc. 119, 5110-5117 (1997). [CrossRef]
  33. R. Challa, T. Gunaratne, and M. C. Simpson, "Pump-probe measurement of vibrational lifetimes in heme. Dependence on state preparation," submitted to Chem. Phys. Lett.
  34. M. C. Schneebeck (Simpson), L. E. Vigil, and M. R. Ondrias, "Mode-selective energy localization during photoexcitation of deoxyhemoglobin and heme model complexes," Chem. Phys. Lett. 215, 251-256 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited