OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 30 — Oct. 20, 2006
  • pp: 7871–7877

Achromatic optical elements

Anatoly M. Smolovich  »View Author Affiliations

Applied Optics, Vol. 45, Issue 30, pp. 7871-7877 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (228 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The principles of wavefront reconstruction by means of a geometric-optical reflection of radiation from surfaces of interference fringe maxima are discussed. The optical elements based on these principles should be achromatic. Two methods of the optical elements design are proposed. The first method is a direct holographic recording of the interference fringe structure containing only a few periods, and the second method is a combination of the measurement of the object wavefront shape with digital holography methods.

© 2006 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(090.1970) Holography : Diffractive optics
(090.2890) Holography : Holographic optical elements
(100.5090) Image processing : Phase-only filters

ToC Category:

Original Manuscript: January 24, 2006
Revised Manuscript: May 19, 2006
Manuscript Accepted: June 16, 2006

Anatoly M. Smolovich, "Achromatic optical elements," Appl. Opt. 45, 7871-7877 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, "Microscopy by reconstructed wavefronts," Proc. R. Soc. London , Ser. A 197, 457-484 (1949).
  2. R. W. Meier, "Magnification and third-order aberrations in holography," J. Opt. Soc. Am. 55, 987-992 (1965).
  3. Yu. N. Denisyuk, "On the reflection of optical properties of an object in the wave field of the radiation scattered by it," Sov. Phys. Dokl. 7, 543-545 (1962).
  4. S. A. Benton, "Hologram reconstruction with incoherent extended sources," J. Opt. Soc. Am. 59, 1545A (1969).
  5. Yu. N. Denisyuk, "On the reflection of optical properties of an object in the wave field of the radiation scattered by it," Opt. Spectrosc. 15, 279-284 (1963).
  6. I. N. Sisakyan and A. M. Smolovich, "Achromatic reconstruction of a wavefront," Sov. Tech. Phys. Lett. 17, 16-17 (1991).
  7. D. A. Dement'ev, A. L. Ivanov, O. B. Serov, A. M. Smolovich, A. G. Stepanov, and S. V. Chekalin, "Achromatic reconstruction of the wave front femtosecond laser pulses," JETP Lett. 65, 402-404 (1997). [CrossRef]
  8. Z. M. Zhang, "Optics in China: ancient and modern accomplishments," in International Trends in Optics, J. W. Goodman, ed. (Academic, 1991), Vol. 1, pp. 185-194.
  9. H. Gamo, "Magic mirrors: optics, technology and history," demonstration and poster session WXI at the Optical Society of America Annual Meeting, New Orleans, 17-20 October, 1983.
  10. S. Hahn, K. Kugimiya, M. Yamashita, P. R. Blaustein, and K. Takahashi, "Characterization of mirror-like wafer surfaces using the magic mirror method," J. Cryst. Growth 103, 423-432 (1990). [CrossRef]
  11. S. Hahn, K. Kugimiya, K. Vojtechovsky, M. Sifalda, M. Yamashita, P. R. Blaustein, K. Takahashi, "Characterization of mirror-polished SI wafers and advanced SI substrate structures using the magic mirror method," Semicond. Sci. Technol. 7, A80-A85 (1992). [CrossRef]
  12. F. Riesz, "Geometrical optical model of the image formation in Makyoh (magic-mirror) topography," J. Phys. D 33, 3033-3040 (2000). [CrossRef]
  13. F. Riesz, "Makyoh topography: a simple yet powerful optical method for flatness and defect characterization of mirror-like surfaces," in Optical Micro- and Nanometrology in Manufacturing Technology, Ch. Gorecki and A. K. Asundi, eds., Proc. SPIE 5458, 86-100 (2004). [CrossRef]
  14. G. Lippman, "Sur la theorie de la photographie des couleurs simples et composees par la methode interferentielle," J. Phys. (Paris), Colloq. 3, 97-107 (1894).
  15. K. A. Stetson, "What is a hologram," Laser Focus 3(5), 25-29 (1967).
  16. N. K. Sheridon, "Production of blazed holograms," Appl. Phys. Lett. 12, 316-318 (1968). [CrossRef]
  17. L. B. Lezem, P. M. Hirsch, and J. A. Jordan, "The kinoform: a new wavefront reconstruction device," IBM J. Res. Develop. 13, 150-155 (1969). [CrossRef]
  18. M. Kovatchev and R. Ilieva, "Inphase optical processors. 1. Inphase structures in optical computing," in Optical Computing, Vol. 6 of 1991 OSA Technical Digest Series (Optical Society of America, 1991), pp. 389-396.
  19. M. Kovatchev and R. Ilieva, "Diffractive, refractive optics or anything more? Comparative analysis and trends of development," J. Mod. Optics 43, 1535-1541 (1996). [CrossRef]
  20. D. Faklis and G. M. Morris, "Spectral properties of multiorder diffractive lenses," Appl. Opt. 34, 2462-2468 (1995). [CrossRef] [PubMed]
  21. D. W. Sweeney and G. E. Sommargen, "Harmonic diffractive lenses," Appl. Opt. 34, 2469-2475 (1995). [CrossRef] [PubMed]
  22. S. Sinzinger and M. Testorf, "Transition between diffractive and refractive micro-optical components," Appl. Opt. 34, 5970-5976 (1995). [CrossRef] [PubMed]
  23. M. Rossi, R. E. Kunz, and H. P. Herzig, "Refractive and diffractive properties of planar micro-optical elements," Appl. Opt. 34, 5996-6007 (1995). [CrossRef] [PubMed]
  24. C. G. Blough, M. Rossi, S. K. Mack, and R. L. Michaels, "Single-point diamond turning and replication of visible and near-infrared diffractive optical elements," Appl. Opt. 36, 4648-4654 (1997). [CrossRef] [PubMed]
  25. T. R. Sales and G. M. Morris, "Diffractive-refractive behavior of kinoform lenses," Appl. Opt. 36, 253-257 (1997). [CrossRef] [PubMed]
  26. Y. Fu and N. K. A. Bryan, "Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology," Opt. Eng. 40, 511-516 (2001). [CrossRef]
  27. T. Ammer and M. Rossi, "Diffractive optical elements with modulated zone sizes," J. Mod. Optics 47, 2281-2293 (2000). [CrossRef]
  28. Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, 1990). [CrossRef]
  29. S. V. Chekalin, D. A. Dement'ev, A. L. Ivanov, Y. A. Matveets, O. B. Serov, A. M. Smolovich, and A. G. Stepanov, "Geometric-optical reconstruction of a wavefront," in ICONO '98: Nonlinear Optical Phenomena and Coherent Optics in Information Technologies, S. S. Chesnokov, V. P. Kandidov, and N. I. Koroteev, eds., Proc. SPIE 3733, 452-458 (1999). [CrossRef]
  30. M. A. Cervantes and A. M. Smolovich, "Ultrashort pulse scattering by 3D interference fringe structure," in ICONO 2001: Ultrafast Phenomena and Strong Laser Fields, V. M. Gordienko, A. A. Afanas'ev, and V. V. Shuvalov, eds., Proc. SPIE 4752, pp. 66-73 (2002). [CrossRef]
  31. D. Gabor and G. W. Stroke, "The theory of deep holograms," Proc. R. Soc. London A 304, 275-289 (1968). [CrossRef]
  32. S. V. Chekalin, D. A. Dement'ev, A. L. Ivanov, Yu. A. Matveets, O. B. Serov, A. M. Smolovich, and A. G. Stepanov, "Geometric-optical reconstruction of a wavefront. Experimental realization with femtosecond laser pulses," Optics Commun. 150, 38-42 (1998). [CrossRef]
  33. M. Born and E. Wolf, Principles of Optics, 2nd ed. (Pergamon, 1964).
  34. I. N. Sisakyan, A. M. Smolovich, and V. A. Soifer, "Apparatus for radiation focusing," Russian patent 1620973 (1990).
  35. S. A. Aseyev, M. A. Cervantes, S. V. Chekalin, V. O. Kompanets, Yu. A. Matveets, O. B. Serov, A. M. Smolovich, and V. S. Terpugov, "Femtosecond holography in planar optical waveguides," in Photon Echo and Coherent Spectroscopy 2005, V. V. Samartsev, ed., Proc. SPIE 6181, 274-281 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited