OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 30 — Oct. 20, 2006
  • pp: 7928–7937

Photorefractivity of poly- N -vinylindole-based materials as compared with that of poly- N -vinylcarbazole-based blends

Marco Angiuli, Francesco Ciardelli, Arturo Colligiani, Francesco Greco, Annalisa Romano, Giacomo Ruggeri, and Elpidio Tombari  »View Author Affiliations


Applied Optics, Vol. 45, Issue 30, pp. 7928-7937 (2006)
http://dx.doi.org/10.1364/AO.45.007928


View Full Text Article

Enhanced HTML    Acrobat PDF (317 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The asymmetric two-beam coupling technique has been employed to measure the photorefractivity of thin films of polymer blends containing 2,5-dimethyl-4-(p-nitrophenylazo)anisole as the nonlinear optical component. Poly-(1-vinylindole) and poly-(2,3-dimethyl-1-vinylindole) were the photoconductive polymer counterparts. The values of the photorefractivity are reported. It appears that they are comparable with those of similar blends based on the well-known poly-(9-vinylcarbazole) (PVK), here considered as a reference standard. Careful differential scanning calorimetry analyses have been accomplished on the different blends taken into account to rationalize the significantly longer shelf lifetime of the indolyl-based films with respect to the PVK-based blends.

© 2006 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(160.5470) Materials : Polymers
(190.5330) Nonlinear optics : Photorefractive optics
(210.4810) Optical data storage : Optical storage-recording materials
(230.4320) Optical devices : Nonlinear optical devices

History
Original Manuscript: March 10, 2006
Revised Manuscript: June 8, 2006
Manuscript Accepted: June 9, 2006

Citation
Marco Angiuli, Francesco Ciardelli, Arturo Colligiani, Francesco Greco, Annalisa Romano, Giacomo Ruggeri, and Elpidio Tombari, "Photorefractivity of poly-N-vinylindole-based materials as compared with that of poly-N-vinylcarbazole-based blends," Appl. Opt. 45, 7928-7937 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-30-7928


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Colligiani, F. Brustolin, V. Castelvetro, F. Ciardelli, and G. Ruggeri, "Poly(1-vinylindole) and some of its methyl derivatives as substrates for photorefractive materials: their synthesis, optical and electrical characterization," in Organic Photorefractives, Photoreceptors, and Nanocomposites, K.L. Lewis and K. Meerholz, eds., Proc. SPIE 4104,71-77 (2000).
  2. F. Brustolin, V. Castelvetro, F. Ciardelli, G. Ruggeri, and A. Colligiani, "Synthesis and characterization of different poly(1-vinylindole)s for photorefractive materials," J. Polym. Sci. Part A: Polym. Chem. 39, 253-262 (2001). [CrossRef]
  3. C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, A. Mazzotta, D. Michelotti, G. Ruggeri, and C. A. Veracini, "Photoconductive films of poly-N-vinylindole-based blends for high-voltage photorefractive electrooptic cells," Synth. Met. 138, 341-345 (2003). [CrossRef]
  4. R. Angelone, C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, F. Greco, A. Mazzotta, and G. Ruggeri, "Synthesis and electrooptical characterization of polysiloxanes containing indolyl groups acting as photoconductive substrates for photorefractive materials," e-Polymers 075, 1-15 (2004).
  5. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A photorefractive polymer with high optical gain and diffraction efficiency near 100%," Nature 371, 497-500 (1994). [CrossRef]
  6. W. E. Moerner and S. Silence, "Polymeric photorefractive materials," Chem. Rev. 94, 127-155 (1994). [CrossRef]
  7. F. Würthner, R. Wortmann, and K. Meerholz, "Chromophore design for photorefractive organic materials," ChemPhysChem 3, 17-31 (2002). [CrossRef] [PubMed]
  8. K. Meerholz, R. Bittner, Y. De Nardin, C. Bräuchle, E. Hendrickx, B. L. Volodin, B. Kippelen, and N. Peyghambarian, "Stability improvement of high-performance photorefractive polymers containing eutectic mixtures of electro-optic chromophores," Adv. Mater. 9, 1043-1046 (1997). [CrossRef]
  9. R. Bittner, C. Bräuchle, and K. Meerholz, "Influence of the glass-transition temperature and the chromophore content on the grating buildup dynamics of poly(N-vinylcarbazole)-based photorefractive polymers," Appl. Opt. 37, 2843-2851 (1998). [CrossRef]
  10. R. Bittner, T. K. Däubler, D. Neher, and K. Meerholz, "Influence of glass-transition temperature and chromophore content on the steady-state performance of poly(N-vinylcarbazole)-based photorefractive polymers," Adv. Mater. 11, 123-127 (1999). [CrossRef]
  11. H. Moon, J. Hwang, N. Kim, and S. Y. Park, "Synthesis and properties of photorefractive polymers containing indole-based multifunctional chromophore as a pendant group," Macromolecules 33, 5116-5123 (2000). [CrossRef]
  12. R. Angelone, M. Angiuli, F. Ciardelli, A. Colligiani, F. Greco, A. Romano, G. Ruggeri, and E. Tombari, "An indole-based low molecular weight glass-former giving materials with high cooperative photorefractive optical gain," in Organic Optoelectronics and Photonics II, P.L.Heremans, M.Muccini, and E.A.Meulenkamp, eds., Proc. SPIE 6192,483-494 (2006).
  13. E. Gipstein and W. A. Hewett, "Polymerization and copolymerization of N-vinylindole and N-vinylmethylindoles," Macromolecules 2, 82-85 (1969). [CrossRef]
  14. A. Priola, G. Gatti, and S. Cesca, "Polymerization of 1-vinylindole and its methyl derivatives," Makromol. Chem. 180, 1-11 (1979). [CrossRef]
  15. D. J. Binks, D. J. K. Khand, and D. P. West, "Reorientation of chromophores in dispersive photorefractive polymers," J. Opt. Soc. Am. B 18, 308-312 (2001). [CrossRef]
  16. D. W. Van Krevelen, Properties of Polymers (Elsevier, 1997), pp. 535-583.
  17. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, "Orientationally enhanced photorefractive effect in polymers," J. Opt. Soc. Am. B 11, 320-330 (1994). [CrossRef]
  18. Y. Wang and A. Suna, "Fullerenes in photoconductive polymers. Charge generation and charge transport," J. Phys. Chem. B 101, 5627-5638 (1997). [CrossRef]
  19. R. H. Young, J. A. Sinicropi, and J. J. Fitzgerald, "Dipole moments, energetic disorder, and charge-transport in molecularly doped polymers," J. Phys. Chem. 99, 9497-9506 (1995). [CrossRef]
  20. R. A. Marcus and P. J. Siders, "Theory of highly exothermic electron transfer reactions," J. Phys. Chem. 86, 622-630 (1982). [CrossRef]
  21. H. Bässler, "Charge-transport in random organic photoconductors," Adv. Mater. 5, 662-665 (1993). [CrossRef]
  22. D. M. Pai, J. F. Yanus, and M. Stolka, "Trap controlled hopping transport," J. Phys. Chem . 88, 4714-4717 (1984). [CrossRef]
  23. H. Bässler, "Charge transport in disordered organic photoconductors a Monte Carlo simulation study," Phys. Status Solidi B 175, 15-56 (1993). [CrossRef]
  24. T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, "Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials," Phys. Rev. B 61, 13515-13527 (2000). [CrossRef]
  25. D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, and C. Samyn, "Influence of the chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites," J. Chem. Phys. 112, 11030-11037 (2000). [CrossRef]
  26. O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, "Role of temperature in controlling performance of photorefractive organic glasses," ChemPhysChem 4, 732-744 (2003). [CrossRef] [PubMed]
  27. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979). [CrossRef]
  28. J. S. Schildkraut and A. V. Buettner, "Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers," J. Appl. Phys. 72, 1888-1893 (1992). [CrossRef]
  29. O. Ostroverkhova and K. D. Singer, "Space-charge dynamics in photorefractive polymers," J. Appl. Phys. 92, 1727-1743 (2002). [CrossRef]
  30. O. Ostroverkhova and W. E. Moerner, "Organic photorefractives: mechanisms, materials, and applications," Chem. Rev. 104, 3267-3314 (2004). [CrossRef] [PubMed]
  31. C. C. Teng and H. C. Man, "Simple reflection technique for measuring the electro-optic coefficient of poled polymers," Appl. Phys. Lett. 29, 1734-1736 (1990). [CrossRef]
  32. J. S. Schildkraut, "Determination of the electro-optical coefficient of a poled polymer film," Appl. Opt. 29, 2839-2841 (1990). [CrossRef] [PubMed]
  33. Sandalphon, B. Kippelen, K. Meerholz, and N. Peyghambarian, "Ellipsometric measurements of poling birefringence, the Pockels effect and the Kerr effect in high performance photorefractive polymer composites," Appl. Opt. 35, 2346-2354 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited