OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 31 — Nov. 1, 2006
  • pp: 8019–8025

Photochromic isomerization of spirobenzopyran in nanoholes of anodic alumina

Mitsunori Saito and Yasuhiro Tsubokura  »View Author Affiliations


Applied Optics, Vol. 45, Issue 31, pp. 8019-8025 (2006)
http://dx.doi.org/10.1364/AO.45.008019


View Full Text Article

Enhanced HTML    Acrobat PDF (1105 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A notable change in the photochromic characteristics was observed when the benzene solution of spirobenzopyran was put in nanoholes of anodic alumina. The absorption peak that appeared in the ultraviolet irradiation process shifted to a shorter wavelength, and the decay time of the decoloration process became 200 times longer than that of the original solution. After a preservation period of several days, however, both the absorption wavelength and the decay time recovered to those of the original solution. These experimental results suggest that the photochromic isomerization in the alumina nanoholes is affected by the large surface area of the matrix rather than the limited free volume.

© 2006 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.4890) Materials : Organic materials
(230.4000) Optical devices : Microstructure fabrication
(330.1690) Vision, color, and visual optics : Color
(350.5130) Other areas of optics : Photochemistry

History
Original Manuscript: May 2, 2006
Revised Manuscript: June 19, 2006
Manuscript Accepted: June 28, 2006

Citation
Mitsunori Saito and Yasuhiro Tsubokura, "Photochromic isomerization of spirobenzopyran in nanoholes of anodic alumina," Appl. Opt. 45, 8019-8025 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-31-8019


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. H. Brown, Photochromism (Wiley, 1971).
  2. D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-845 (1989). [CrossRef] [PubMed]
  3. J. R. Kulisch, H. Franke, R. Irmscher, and Ch. Buchal, "Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides," J. Appl. Phys. 71, 3123-3126 (1992). [CrossRef]
  4. A. Yacoubian and T. M. Aye, "Enhanced optical modulation using azo-dye polymers," Appl. Opt. 32, 3073-3080 (1993). [CrossRef] [PubMed]
  5. T. Okamoto, T. Kamiyama, and I. Yamaguchi, "All-optical spatial light modulator with surface plasmon resonance," Opt. Lett. 18, 1570-1572 (1993). [CrossRef] [PubMed]
  6. N. Tanio and M. Irie, "Photooptical switching of polymer film waveguide containing photochromic diarylethenes," Jpn. J. Appl. Phys. Part 1 33, 1550-1553 (1994). [CrossRef]
  7. D. Levy and F. D. Monte, "Photochromic doped solgel materials for fiberoptic devices," J. Sol-Gel Sci. Technol. 8, 931-935 (1997). [CrossRef]
  8. K. Sasaki and T. Nagamura, "Ultrafast wide range all-optical switch using complex refractive-index changes in a composite film of silver and polymer containing photochromic dye," J. Appl. Phys. 83, 2894-2900 (1998). [CrossRef]
  9. J. Biteau, F. Chaput, K. Lahlil, J.-P. Boilot, G. M. Tsivgoulis, J.-M. Lehn, B. Darracq, C. Marois, and Y. Lévy, "Large and stable refractive index change in photochromic hybrid materials," Chem. Mater. 10, 1945-1950 (1998). [CrossRef]
  10. S. Lecomte, U. Gubler, M Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, "Reversible optical structuring of polymer waveguides doped with photochromic molecules," Appl. Phys. Lett. 77, 921-923 (2000). [CrossRef]
  11. M. Kryszewski, B. Nadolski, A. M. North, and R. A. Pethrick, "Kinetic matrix effects (response and density distribution functions): ring closure," J. Chem. Soc. Faraday Trans. 2, 76, 351-368 (1980). [CrossRef]
  12. K. Horie, M. Tsukamoto, and I. Mita, "Photochromic reaction of spiropyran in polycarbonate film," Eur. Polym. J. 21, 805-810 (1985). [CrossRef]
  13. J. G. Victor and J. M. Torkelson, "On measuring the distribution of local free volume in glassy polymers by photochromic and fluorescence techniques," Macromolecules 20, 2241-2250 (1987). [CrossRef]
  14. D. Levy and D. Avnir, "Effects of the changes in the properties of the silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans," J. Phys. Chem. 92, 4734-4738 (1988). [CrossRef]
  15. D. Preston, J.-C. Pouxviel, T. Novinson, W. Kaska, B. Dunn, and J. I. Zink, "Photochromism of spiropyrans in aluminosilicate gels," J. Phys. Chem. 94, 4167-4172 (1990). [CrossRef]
  16. D. Levy, "Photochromic sol-gel materials," Chem. Mater. 9, 2666-2670 (1997). [CrossRef]
  17. A. Tork, F. Boudreault, M. Roberge, A. M. Ritcey, R. A. Lessard, and T. V. Galstian, "Photochromic behavior of spiropyran in polymer matrices," Appl. Opt. 40, 1180-1186 (2001). [CrossRef]
  18. M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, "Micropolarizer made of the anodic alumina film," Appl. Phys. Lett. 55, 607-609 (1989). [CrossRef]
  19. H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science 268, 1466-1468 (1995). [CrossRef] [PubMed]
  20. I. A. Levitsky, J. Liang, and J. M. Xu, "Highly ordered arrays of organic-inorganic nanophotonic composites," Appl. Phys. Lett. 81, 1696-1698 (2002). [CrossRef]
  21. N. Garcia, E. V. Ponizowskaya, H. Zhu, J. Xiao, and A. Pons, "Wide photonic bandgaps at the visible in metallic nanowire arrays embedded in a dielectric matrix," Appl. Phys. Lett. 82, 3147-3149 (2003). [CrossRef]
  22. M. Saito, S. Nakamura, and M. Miyagi, "Light scattering by liquid crystals in columnar micropores," J. Appl. Phys. 75, 4744-4746 (1994). [CrossRef]
  23. K. Uchida, M. Fujita, Y. Aoi, M. Saito, and M. Irie, "Photochromism of diarylethenes on porous aluminum oxide: fatigue resistance and redox potentials of the photochromes," Chem. Lett. 366-367 (2001). [CrossRef]
  24. I. Miura, Y. Okada, S. Kudoh, and M. Nakata, "Organic electroluminescence in porous alumina," Jpn. J. Appl. Phys. Part 1 43, 7552-7553 (2004). [CrossRef]
  25. M. Saito, A. Honda, and K. Uchida, "Photochromic liquid-core fibers with nonlinear input-output characteristics," J. Lightwave Technol. 21, 2255-2261 (2003). [CrossRef]
  26. M. Saito, M. Shibasaki, S. Nakamura, and M. Miyagi, "Optical waveguides fabricated in anodic alumina films," Opt. Lett. 19, 710-713 (1994). [CrossRef] [PubMed]
  27. D. Levy, S. Einhorn, and D. Avnir, "Applications of the solgel process for the preparation of photochromic information-recording materials: synthesis, properties, mechanisms," J. Non-Cryst. Solids 113, 137-145 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited