OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 31 — Nov. 1, 2006
  • pp: 8052–8062

Hydrodynamics of rotating liquid mirrors. I. Synchronous disturbances

Paul Hickson  »View Author Affiliations

Applied Optics, Vol. 45, Issue 31, pp. 8052-8062 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (536 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effects of axis alignment errors, planetary rotation, and tidal forces on rotating liquid mirrors are analyzed. These produce a surface distortion that decreases exponentially with distance inward from the rim with a characteristic length l = 3 h f / 2 , where h is the thickness of the fluid and f is the focal length. Even a small tilt of the rotation axis can produce a significant deformation of the optical surface. The maximum surface height error is 3 ε l , where ε is the tilt angle and is typically of the order of 1.5   μm for a 1   arc   sec tilt. The main optical effect of the wave is to produce a ring, with angular diameter 6 ε , offset by half of the diameter in the direction opposite the tilt. This diamond ring aberration can be avoided by accurate alignment of the rotation axis or by masking the outer few centimeters of the mirror. Planetary rotation produces a small deformation of the order of 100   nm for a 10  m telescope at low latitude on Earth. This deformation can be canceled by a small tilt of the rotation axis. Tidal forces produced by the Moon, or by the Earth in the case of a lunar telescope, produce an inconsequential, subnanometer, surface deformation.

© 2006 Optical Society of America

OCIS Codes
(110.6770) Imaging systems : Telescopes
(230.4040) Optical devices : Mirrors
(350.1260) Other areas of optics : Astronomical optics

Original Manuscript: April 11, 2006
Manuscript Accepted: May 31, 2006

Paul Hickson, "Hydrodynamics of rotating liquid mirrors. I. Synchronous disturbances," Appl. Opt. 45, 8052-8062 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. F. Borra, "The liquid-mirror telescope as a viable astronomical tool," J. R. Astron. Soc. Can. 76, 245-256 (1982).
  2. P. Hickson, E. F. Borra, R. Cabanac, R. Content, B. K. Gibson, G. A. H. Walker, "UBC/Laval 2.7-meter liquid-mirror telescope," Astrophys. J. Lett. 436, L201-L204 (1994). [CrossRef]
  3. A. Potter and M. K. Mulrooney, "Liquid-metal mirror for optical measurements of orbital debris," Adv. Space Res. 19, 213-219 (1997). [CrossRef]
  4. R. J. Sica, S. Sargoytchev, P. S. Argall, E. F. Borra, L. Girard, C. T. Sparrow, and S. Flatt, "Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system," Appl. Opt. 34, 6925-6936 (1995). [CrossRef] [PubMed]
  5. R. Wuerker, Department of Physics, UCLA (personal communication, 1995).
  6. P. Hickson, R. Cabanac, A. Crotts, S. Gromoll, B. Johnson, V. de Lapparent, K. M. Lanzetta, M. K. Mulrooney, and S. Sivanandam are preparing a manuscript to be called, "The large zenith telescope--a 6-meter mercury-mirror telescope."
  7. P. Hickson, "Wide-field tracking with zenith-pointing telescopes," Mon. Not. R. Astron. Soc. 330, 540-546 (2002). [CrossRef]
  8. E. F. Borra, Department of Physics, Université Laval (personal communication, 2005).
  9. P. Hickson and K. M. Lanzetta, "Large-aperture mirror array (LAMA): project Overview," in Second Backaskog Workshop on Extremely Large Telescopes, A.L. Ardeberg and T. Andersen, eds., Proc. SPIE 5382,115-125 (2004).
  10. R. Angel, D. Eisenstein, S. Sivanandam, S. P. Worden, J. Burge, E. F. Borra, C. Gosselin, O. Seddiki, P. Hickson, K. B. Ma, B. Foing, and J-L. Gosset, "A deep-field infrared observatory near the lunar pole," in Proceedings of the Seventh International Conference on the Exploration and Utilization of the Moon, Toronto, Canada, 23 September 2005, p. 189. [PubMed]
  11. R. Angel, D. Eisenstein, S. Sivanandam, S. P. Worden, J. Burge, E. Borra, C. Gosselin, O. Seddiki, P. Hickson, K. B. Ma, B. Foing, J.-L. Josset, S. Thibault, and P. Van Susante, "A Lunar Liquid-Mirror Telescope (LLMT) for deep-field infrared observations near the lunar pole," in Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter, J. C. Mather, H. A. MacEwen, and M. W. de Graauw, eds., Proc. SPIE 6265, 62651U (2006).
  12. L. Girard and E. F. Borra, "Optical tests of a 2.5-m-diameter liquid mirror: behavior under external perturbations and scattered-light measurements," Appl. Opt. 36, 6278-6288 (1997). [CrossRef]
  13. G. Tremblay and E. F. Borra, "Optical tests of a 3.7-m-diameter liquid mirror: behavior under external perturbations," Appl. Opt. 39, 5651-5662 (2000). [CrossRef]
  14. M. K. Mulrooney, "A 3.0-meter liquid-mirror telescope," Ph.D. dissertation (Rice University, 2000).
  15. B. K. Gibson and P. Hickson, "Liquid-mirror surface aberrations. I--wavefront analysis," Astrophys. J. 391, 409-417 (1992). [CrossRef]
  16. P. Hickson, "Eliminating the coriolis effect in liquid mirrors," Publ. Astron. Soc. Pac. 113, 1511-1514 (2001). [CrossRef]
  17. J. P. Vanyo, Rotating Fluids in Engineering and Science (Dover, 1993).
  18. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, 1987).
  19. R. Wilson, Reflecting Telescope Optics I (Springer, 1996), Section 3.3.2.
  20. A. Maréchal, "Étude des effets combinés de la diffraction et des aberrations géomtriques sur l'image d'un point lumineux," Rev. Opt. 26, 257-277 (1947).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited