OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 31 — Nov. 1, 2006
  • pp: 8116–8131

Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment

Timothy J. Smyth, Gerald F. Moore, Takafumi Hirata, and James Aiken  »View Author Affiliations

Applied Optics, Vol. 45, Issue 31, pp. 8116-8131 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (3185 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A semianalytical approach to the problem of determining inherent optical properties from satellite and in situ ocean color data is presented. The model uses empirically derived spectral slopes between neighboring wavebands in combination with radiative transfer modeling to determine the spectral absorption (a) and backscatter (b b ); these values are then further decomposed into absorption due to phytoplankton, detrital, and colored dissolved organic matter components. When compared with over 400 in situ data points the model makes good retrievals of the total absorption and backscatter across the entire spectrum, with regression slopes close to unity, little or no bias, high percentage of variance explained, and low rms errors.

© 2006 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(030.5620) Coherence and statistical optics : Radiative transfer
(030.5630) Coherence and statistical optics : Radiometry
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors

Original Manuscript: April 27, 2006
Revised Manuscript: June 22, 2006
Manuscript Accepted: June 23, 2006

Virtual Issues
Vol. 1, Iss. 12 Virtual Journal for Biomedical Optics

Timothy J. Smyth, Gerald F. Moore, Takafumi Hirata, and James Aiken, "Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment," Appl. Opt. 45, 8116-8131 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Clark, "Phytoplankton pigment algorithms for the NIMBUS-7 CZCS," in Oceanography from Space, J. F. R. Gower, ed. (Plenum, 1981), pp. 227-237.
  2. R. H. Evans and H. R. Gordon, "Coastal zone color scanner 'system calibration': a retrospective examination," J. Geophys. Res. 99, 7293-7307 (1994). [CrossRef]
  3. J. Aiken, G. F. Moore, C. Trees, S. Hooker, and D. Clark, "The SeaWiFS CZCS-type pigment algorithm," in NASA Tech. Memo. 104566, S. B. Hooker and E. R. Firestone, eds. (NASA, 1995), Vol. 29, p. 34.
  4. J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24937-24953 (1998). [CrossRef]
  5. R. W. Eppley, E. Stewart, M. R. Abbott, and V. Heyman, "Estimating ocean primary production from satellite chlorophyll--introduction to regional differences and statistics for the Southern Californian Bight," J. Plankton Res. 7, 57-70 (1985). [CrossRef]
  6. K. L. Carder, F. R. Chen, Z. P. Lee, and S. K. Hawes, "Semianalytic moderate resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures," J. Geophys. Res. 104, 5403-5421 (1999). [CrossRef]
  7. F. E. Hoge and P. E. Lyon, "Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors," J. Geophys. Res. 101, 16631-16648 (1996). [CrossRef]
  8. F. Gohin, S. Loyer, M. Lunven, C. Labry, J. M. Froidefond, D. Delmas, M. Hurret, and A. Herbland, "Satellite-derived parameters for biological modelling in coastal waters: Illustration over the eastern continental shelf of the Bay of Biscay," Remote Sens. Environ. 95, 29-46 (2005). [CrossRef]
  9. Z. P. Lee, K. L. Carder, and R. A. Arnone, "Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters," Appl. Opt. 41, 5755-5772 (2002). [CrossRef] [PubMed]
  10. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, and J. K. Yungel, "Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm," Appl. Opt. 38, 495-504 (1999). [CrossRef]
  11. K. L. Carder, F. R. Chen, J. P. Cannizzaro, J. W. Campbell, and B. G. Mitchell, "Performance of the MODIS semianalytical ocean color algorithm for chlorophyll-a," Adv. Space Res. 33, 1152-1159 (2004). [CrossRef]
  12. D. Blondeau-Patissier, G. H. Tilstone, V. Martinez-Vicente, and G. F. Moore, "Comparison of biophysical marine products from SeaWiFS MODIS and a bio-optical model with in situ measurements from Northern European waters," J. Opt. A Pure Appl. Opt. 6, 875-889 (2004). [CrossRef]
  13. M. Darecki and D. Stramski, "An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea," Remote Sens. Environ. 89, 326-350 (2004). [CrossRef]
  14. S. A. Garver and D. A. Siegel, "Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea," J. Geophys. Res. 102, 18607-18625 (1997). [CrossRef]
  15. S. Maritorena, D. A. Siegel, and A. R. Peterson, "Optimization of a semianalytical ocean color model for global-scale applications," Appl. Opt. 41, 2705-2714 (2002). [CrossRef] [PubMed]
  16. A. Morel, "In-water and remote measurements of ocean color," Boundary-Layer Meteorol. 18, 177-201 (1980). [CrossRef]
  17. S. Sugihara and M. Kishino, "An algorithm for estimating the water quality parameters from irradiance just below the sea surface," J. Geophys. Res. 93, 10857-10862 (1988). [CrossRef]
  18. C. S. Roesler and M. J. Perry, "In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance," J. Geophys. Res. 100, 13279-13294 (1995). [CrossRef]
  19. A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution," Appl. Opt. 30, 4427-4438 (1991). [CrossRef] [PubMed]
  20. A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters. II. Bi-directional aspects," Appl. Opt. 32, 6864-6879 (1993). [CrossRef] [PubMed]
  21. A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem," Appl. Opt. 35, 4860-4862 (1996). [CrossRef]
  22. R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements, Appl. Opt. 36, 8710-8722 (1997). [CrossRef]
  23. A. Morel, "Optical properties of pure seawater," in Optical Aspects of Oceanography, N. G. Jerlov and E. Steemann Nielsen, eds. (Academic, 1974) pp. 1-24.
  24. A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization," J. Geophys. Res. 100, 13321-13332 (1995). [CrossRef]
  25. A. Morel and S. Maritorena, "Bio-optical properties of oceanic waters: A reappraisal," J. Geophys. Res. 106, 7163-7180 (2001). [CrossRef]
  26. C. D. Mobley. HYDROLIGHT 3.0 User's Guide (SRI International, 1995).
  27. T. J. Petzold, "Volume scattering functions for selected natural waters," Technical Report 71-78 (Scripps Institution of Oceanography, Visibility Laboratory, San Diego, Calif., 1972).
  28. C. Cox and W. Munk, "Statistics of the sea surface derived from sun glitter," J. Mar. Res. 13, 198-227 (1954).
  29. G. Zibordi, L. Alberotanza, R. Doerffer, J. Aiken, M. Wernand, S. Boxall, R. Santer, and O. Ni Cheileachair, "Coastal region long-term measurements for colour remote sensing development and validation (COLORS) project status," in MAS3-CT97-0087, COLORS Project Dataset CD-ROM (2001).
  30. S. Tassan and G. M. Ferrari, "An alternative approach to absorption measurement of aquatic particles retained on filters," Limnol. Oceanogr. 40, 1358-1368 (1995). [CrossRef]
  31. J. L. Mueller and R. W. Austin, "SeaWiFS Technical Report Series: Ocean optics protocols for SeaWiFS validation, Revision 1," in NASA Tech. Memo. 104566, S. B. Hooker and E. R. Firestone, eds. (NASA, 1995), Vol. 25.
  32. A. Barnard, W. S. Pegau, and J. R. V. Zaneveld, "Global relationships of the inherent optical properties of the oceans," J. Geophys. Res. 103, 24955-24968 (1998). [CrossRef]
  33. L. B. Eisner, M. S. Twardowski, T. J. Cowles, and M. J. Perry, "Resolving phytoplankton photoprotective : photosynthetic carotenoid ratios on fine scales using in situ spectral absorption measurements," Limnol. Oceanogr. 48, 632-646 (2003). [CrossRef]
  34. D. A. Siegel, M. H. Wang, S. Maritorena, and W. Robinson, "Atmospheric correction of satellite ocean color imagery: the black pixel assumption," Appl. Opt. 39, 3582-3591 (2000). [CrossRef]
  35. C. H. Whitlock, L. R. Poole, J. W. Usry, W. M. Houghton, W. G. Witte, W. D. Morris, and E. A. Gurganus, "Comparison of reflectance with backscatter and absorption parameters for turbid waters," Appl. Opt. 20, 517-522 (1981). [CrossRef] [PubMed]
  36. H. Loisel and A. Morel, "Light scattering and chlorophyll concentration in case 1 waters: a re-examination," Limnol. Oceanogr. 43, 847-858 (1998). [CrossRef]
  37. A. Morel, "Optical modelling of the upper ocean in relation to its biogenous matter content (Case I waters)," J. Geophys. Res. 93, 10749-10768 (1988). [CrossRef]
  38. R. W. Gould, R. A. Arnone, and P. M. Martinolich, "Spectral dependence of the scattering coefficient in case 1 and case 2 waters," Appl. Opt. 38, 2377-2383 (1999). [CrossRef]
  39. C. S. Roesler, M. J. Perry, and K. L. Carder, "Modelling in situ phytoplankton absorption from total absorption spectra," Limnol. Oceanogr. 34, 1510-1523 (1989). [CrossRef]
  40. P. J. Werdell and S. W. Bailey, "An improved in situ data set for bio-optical algorithm development and ocean color satellite validation," Remote Sens. Environ. 98, 122-140 (2005). [CrossRef]
  41. Z. P. Lee and K. L. Carder, "Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance," Remote Sens. Environ. 89, 361-368 (2004). [CrossRef]
  42. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 108, C7, 3211; doi: (2003). [CrossRef]
  43. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge U. Press, 2000).
  44. G. F. Moore, J. Aiken, and S. J. Lavender, "The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS," Int. J. Remote Sens. 20, 1713-1733 (1999). [CrossRef]
  45. R. Santer and C. Schmechtig, "Adjacency effects on water surfaces: primary scattering approximation and sensitivity study," Appl. Opt. 39, 361-375 (2000). [CrossRef]
  46. J. C. Blackford, J. I. Allen, and F. J. Gilbert, "Ecosystem dynamics at six contrasting sites: a generic modelling study," J. Mar. Syst. 52, 191-215 (2004). [CrossRef]
  47. C. Le Quere, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. Cotrim da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, "Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models," Global Change Biology 11, 2016-2040 (2005).
  48. T. J. Smyth, G. H. Tilstone, and S. B. Groom, "Integration of radiative transfer into satellite models of ocean primary production," J. Geophys. Res. 110, C10014, doi: (2005). [CrossRef]
  49. M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, "Carbon-based ocean productivity and phytoplankton physiology from space," Global Biogeochem. Cycles 19, GB1006, doi: (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited