OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 32 — Nov. 10, 2006
  • pp: 8218–8237

Facility for spectral irradiance and radiance responsivity calibrations using uniform sources

Steven W. Brown, George P. Eppeldauer, and Keith R. Lykke  »View Author Affiliations


Applied Optics, Vol. 45, Issue 32, pp. 8218-8237 (2006)
http://dx.doi.org/10.1364/AO.45.008218


View Full Text Article

Enhanced HTML    Acrobat PDF (2022 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Detectors have historically been calibrated for spectral power responsivity at the National Institute of Standards and Technology by using a lamp–monochromator system to tune the wavelength of the excitation source. Silicon detectors can be calibrated in the visible spectral region with combined standard uncertainties at the 0.1% level. However, uncertainties increase dramatically when measuring an instrument's spectral irradiance or radiance responsivity. We describe what we believe to be a new laser-based facility for spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCUS) that was developed to calibrate instruments directly in irradiance or radiance mode with uncertainties approaching or exceeding those available for spectral power responsivity calibrations. In SIRCUS, the emission from high-power, tunable lasers is introduced into an integrating sphere using optical fibers, producing uniform, quasi-Lambertian, high-radiant-flux sources. Reference standard irradiance detectors, calibrated directly against national primary standards for spectral power responsivity and aperture area measurement, are used to determine the irradiance at a reference plane. Knowing the measurement geometry, the source radiance can be readily determined as well. The radiometric properties of the SIRCUS source coupled with state-of-the-art transfer standard radiometers whose responsivities are directly traceable to primary national radiometric scales result in typical combined standard uncertainties in irradiance and radiance responsivity calibrations of less than 0.1%. The details of the facility and its effect on primary national radiometric scales are discussed.

© 2006 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.5630) Instrumentation, measurement, and metrology : Radiometry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 14, 2006
Manuscript Accepted: April 27, 2006

Citation
Steven W. Brown, George P. Eppeldauer, and Keith R. Lykke, "Facility for spectral irradiance and radiance responsivity calibrations using uniform sources," Appl. Opt. 45, 8218-8237 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-32-8218


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. C. Larason, S. S. Bruce, and A. C. Parr, Spectroradiometric Detector Measurements (U.S. Government Printing Office, 1998).
  2. T. R. Gentile, J. M. Houston, J. E. Hardis, C. L. Cromer, and A. C. Parr, "National Institute of Standards and Technology high-accuracy cryogenic radiometer," Appl. Opt. 35, 1056-1068 (1996). [CrossRef] [PubMed]
  3. T. R. Gentile, J. M. Houston, and C. L. Cromer, "Realization of a scale of absolute spectral response using the NIST high-accuracy cryogenic radiometer," Appl. Opt. 35, 4392-4403 (1996). [CrossRef] [PubMed]
  4. G. Eppeldauer, M. Racz, and T. Larason, "Optical characterization of diffuser-input standard irradiance meters," in Proc. SPIE 3573, 220-224 (1998).
  5. O. G. Peterson, S. A. Tuccio, and B. B. Snavely, "cw operation of an organic dye solution laser," Appl. Phys. Lett. 17, 245-247 (1970). [CrossRef]
  6. J. M. Yarborough, "cw dye laser emission spanning the visible spectrum," Appl. Phys. Lett. 24, 629-630 (1974). [CrossRef]
  7. A. R. Schaefer and K. L. Eckerle, "Spectrophotometric tests using a dye-laser-based radiometric characterization facility," Appl. Opt. 23, 250-256 (1984). [CrossRef] [PubMed]
  8. A. R. Schaefer, R. D. Saunders, and L. R. Hughey, "Intercomparison between independent irradiance scales based on silicon photodiodes physics, gold-point blackbody radiation, and synchrotron radiation," Opt. Eng. 25, 892-896 (1986).
  9. K. D. Mielenz, R. D. Saunders, and J. B. Shumaker, "Spectroradiometric determination of the freezing temperature of gold," J. Res. Natl. Inst. Stand. Technol. 95, 49-67 (1990).
  10. N. P. Fox, J. E. Martin, and D. H. Nettleton, "Absolute spectral radiometric determination of the thermodynamic temperatures of the melting/freezing points of gold, silver, and aluminium," Metrologia 28, 357-374 (1991). [CrossRef]
  11. V. E. Anderson, N. P. Fox, and D. H. Nettleton, "Highly stable, monochromatic and tunable optical radiation source and its application to high accuracy spectrophotometry," Appl. Opt. 31, 536-545 (1992). [CrossRef] [PubMed]
  12. M. Noorma, P. Toivanen, F. Manoocheri, and E. Ikonen, "Characterization of filter radiometers with a wavelength-tunable laser source," Metrologia 40, S220-S223 (2003). [CrossRef]
  13. A. Sperling, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany (personal communication, 2005).
  14. J. M. Houston and J. P. Rice, "NIST reference cryogenic radiometer designed for versatile performance," Metrologia 43, S31-S35 (2006). [CrossRef]
  15. L-1 Standards and Technology, Ijamsville, Md.
  16. D. J. Pugh and K. Jackson, "Automatic gauge block measurement using multiple wavelength interferometry," in Proc. SPIE 656, 244-250 (1986).
  17. T. F. Johnston, R. H. Brady, and W. Proffitt, "Powerful single-frequency ring dye laser spanning the visible spectrum," Appl. Opt. 21, 2307-2316 (1982). [CrossRef] [PubMed]
  18. T. F. Johnston, "Lasers, dye," in Encyclopedia of Physical Science and Technology, R. A. Meyers, ed. (Academic, 2002), pp. 315-359.
  19. L. E. Jusinski and C. A. Taatjes, "Efficient and stable operation of an Ar+-pumped continuous-wave ring laser from 505-560 nm using a coumarin dye," Rev. Sci. Instrum 72, 2837-2838 (2001). [CrossRef]
  20. P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B 3, 125-133 (1986). [CrossRef]
  21. Spectra-Physics, Inc., Wavetrain frequency doubler with a Coherent, Inc. Model 899 Ti:sapphire laser.
  22. W.-L. Zhou, Y. Mori, T. Sasaki, S. M. Nakai, K. Nakano, S. Niikura, and B. Craig, "Intracavity frequency doubling of a continuous wave Ti:sapphire laser with over 70% conversion efficiency," Appl. Phys. Lett. 66, 2463-2465 (1995). [CrossRef]
  23. T. R. Gentile and C. L. Cromer, "Mode-locked lasers for high-accuracy radiometry," Metrologia 32, 585-587 (1996). [CrossRef]
  24. W. S. Hartree, P. R. Haycocks, and N. P. Fox, "The use of a mode-locked laser for ultraviolet radiometry," Metrologia 35, 339-343 (1998). [CrossRef]
  25. J. Fowler and M. Litorja, "Geometric area measurements of circular apertures for radiometry at NIST," Metrologia 40, S9-S12 (2003). [CrossRef]
  26. Spectralon, Labsphere, Inc., No. Sutton, N.H.
  27. E. A. Early, B. C. Bush, S. W. Brown, D. W. Allen, and B. C. Johnson, "Radiometric calibration of the Scripps Earth Polychromatic Imaging Camera," in Proc. SPIE 4483, 77-84 (2001).
  28. T. Stone, U.S. Geological Survey, Flagstaff, Ariz., (personal communication, 2005).
  29. E. F. Zalewski and C. R. Duda, "Silicon photodiode device with 100% external quantum efficiency," Appl. Opt. 22, 2867-2873 (1983). [CrossRef] [PubMed]
  30. Hamamatsu, "Photodiodes," Catalog 1990-91 , 16.
  31. G. P. Eppeldauer and D. C. Lynch, "Opto-mechanical and electronic design of a tunnel-trap Si- radiometer," J. Res. Natl. Inst. Stand. Technol. 105, 813-828 (2000).
  32. G. Eppeldauer, "Noise-optimized silicon radiometers," J. Res. Natl. Inst. Stand. Technol. 105, 209-219 (2000).
  33. Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, Geneva, 1993).
  34. J. L. Gardner, "Correlated color temperature-uncertainty and estimation," Metrologia 37, 381-384 (2000). [CrossRef]
  35. J. L. Gardner, "Correlations in primary spectral standards," Metrologia 40, S167-S176 (2003). [CrossRef]
  36. K. R. Lykke, P.-S. Shaw, L. M. Hanssen, and G. P. Eppeldauer, "Development of a monochromatic, uniform source facility for calibration of radiance and irradiance detectors from 0.2 micrometer to 12 micrometer," Metrologia 35, 479-484 (1998). [CrossRef]
  37. G. Eppeldauer and J. E. Hardis, "Fourteen-decade photocurrent measurements with large-area silicon photodiodes at room temperature," Appl. Opt. 30, 3091-3099 (1991). [CrossRef] [PubMed]
  38. G. Eppeldauer, M. Racz, and L. M. Hanssen, "Spectral responsivity determination of a transfer-standard pyroelectric radiometer," in Proc. SPIE 4818, 118-126 (2002).
  39. G. P. Eppeldauer, S. W. Brown, T. C. Larason, M. Racz, and K. R. Lykke, "Realization of a spectral radiance responsivity scale with a laser-based source and Si radiance meters," Metrologia 37, 531-534 (2000). [CrossRef]
  40. Burgthaler Electronik GmbH.
  41. KaleidaGraph, Synergy Software, Reading, Pa.
  42. J. H. Walker, R. D. Saunders, J. K. Jackson, and D. A. McSparron, Spectral Irradiance Calibrations (U.S. Government Printing Office, 1987).
  43. G. Eppeldauer, Optical Radiation Measurement with Selected Detectors and Matched Electronic Circuits between 200 nm and 20 μm (U.S. Government Printing Office, 2001).
  44. Stanford Research Systems model SR570 or home built.
  45. Hewlett Packard Model HP3458A.
  46. C. E. Gibson, B. K. Tsai, and A. C. Parr, Radiance Temperature Calibrations (U.S. Government Printing Office, 1998).
  47. S. W. Brown, D. K. Clark, B. C. Johnson, H. W. Yoon, K. R. Lykke, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, R. A. Barnes, Y. S. Kim, T. Stone, and J. Mueller, eds., Advances in Radiometry for Ocean Color (NASA, 2004).
  48. H. Preston-Thomas, "The international temperature scale of 1990 (ITS-90)," Metrologia 27, 3-10 (1990). [CrossRef]
  49. D. Halliday and R. Resnick, Fundamentals of Physics (Wiley, 1981).
  50. H. W. Yoon, D. W. Allen, C. E. Gibson, R. D. Saunders, B. C. Johnson, S. W. Brown, and K. R. Lykke, "Temperature scales using radiation thermometers calibrated from absolute irradiance and radiance responsivity," in NCSL International Workshop and Symposium (Orlando, Fla., 2003).
  51. D. W. Allen, R. D. Saunders, B. C. Johnson, C. E. Gibson, and H. W. Yoon, "The development and characterization of an absolute pyrometer calibrated for radiance responsivity," in International Temperature Symposium (Chicago, Ill., 2003).
  52. H. W. Yoon, C. E. Gibson, D. W. Allen, R. D. Saunders, M. Litorja, S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, "The realization and the dissemination of the detector-based kelvin," in Proceedings of Tempmeko 04 (Dubrovnik, Croatia, 2004).
  53. H. W. Yoon, C. E. Gibson, and P. Y. Barnes, "Realization of the National Institute of Standards and Technology detector-based spectral irradiance scale," Appl. Opt. 41, 5879-5890 (2002). [CrossRef] [PubMed]
  54. Principles Governing Photometry (Bureau International des Poids et Mesures, 1983).
  55. R. L. Booker and D. A. McSparron, Photometric Calibrations (U.S. Government Printing Office, 1987).
  56. C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. Larason, and A. C. Parr, "National Institute of Standards and Technology detector-based photometric scales," Appl. Opt. 32, 2936-2948 (1993). [CrossRef] [PubMed]
  57. Y. Ohno, NIST Measurement Services: Photometric Calibrations (U.S. Government Printing Office, 1997).
  58. G. P. Eppeldauer and M. Racz, "Design and characterization of a photometer-colorimeter standard," Appl. Opt. 43, 2621-2631 (2004). [CrossRef] [PubMed]
  59. G. P. Eppeldauer, S. W. Brown, C. C. Miller, and K. R. Lykke, "Improved accuracy photometric and tristimulus-color scales based on spectral irradiance responsivity," Proceedings of the 25th Session of the Commission Internationale de l'Eclairage, Vol. 1, pp. D2-30-D32-33 (2003).
  60. J. Schwinger, "On the classical radiation of accelerated electrons," Phys. Rev. 75, 1912-1925 (1949).
  61. P.-S. Shaw, U. Arp, H. W. Yoon, R. D. Saunders, A. C. Parr, and K. R. Lykke, "A SURF beamline for synchrotron source-based radiometry," Metrologia 40, S124-S127 (2003). [CrossRef]
  62. R. McCluney, Introduction to Radiometry and Photometry (Artech House, 1994).
  63. J. D. Schanda, "Colorimetry," in Handbook of Applied Photometry, C. DeCusatis, ed. (Springer, 1998), pp. 327-412.
  64. G. P. Eppeldauer, "Spectral response based calibration method of tristimulus colorimeters," J. Res. Natl. Inst. Stand. Technol. 103, 615-619 (1998).
  65. S. W. Brown, B. C. Johnson, M. E. Feinholz, M. A. Yarborough, S. J. Flora, K. R. Lykke, and D. K. Clark, "Stray-light correction algorithm for spectrographs," Metrologia 40, S81-S84 (2003). [CrossRef]
  66. Y. Zong, S. W. Brown, K. R. Lykke, and Y. Ohno, "A simple spectral stray light correction method for array spectroradiometers," Appl. Opt. 45, 1111-1119 (2006). [CrossRef] [PubMed]
  67. C. Pietras, M. Miller, R. Frouin, E. J. Welton, and I. Slutsker, "Calibration of sun photometers and sky radiance sensors," in In Situ Aerosol Optical Thickness Collected by the SIMBIOS Program (1997-2000): Protocols, Data QC, and Analysis, R. B. G. S. Fargion and C. McClain, eds. (NASA Goddard Space Flight Center, 2001).
  68. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Leaven, I. Jankowiak, and A. Smirnov, "Aeronet--a federated instrument network and data archive for aerosol characterization," Remote Sens. Environ. 66, 1-16 (1998). [CrossRef]
  69. N. Souaidia, C. Pietras, G. Fargion, R. A. Barnes, R. Frouin, K. R. Lykke, B. C. Johnson, and S. W. Brown, "Comparison of laser-based and conventional calibrations of sun photometers," in Proc. SPIE 4481, 61-72 (2003).
  70. G. Thuillier, M. Herse, T. Foujots, W. Peetermans, W. Gillotay, P. C. Simon, and H. Mande, "The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EUREKA missions," Sol. Phys. 214, 1-22 (2003). [CrossRef]
  71. E. A. Early, NIST, Gaithersburg, Md. (personal communication, 2005).
  72. T. Stone, U.S. Geological Survey, Flagstaff, Ariz. (personal communication, 2005).
  73. R. Korde, International Radiation Detectors, Inc., Torrance, Calif. (personal communication, 2005).
  74. G. Eppeldauer, "Near infrared radiometer standards," in Proc. SPIE 2815, 42-54 (1996).
  75. G. Eppeldauer, "Electronic characteristics of Ge and InGaAs radiometers," in Proc. SPIE 3061-97, 833-838 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited