OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 32 — Nov. 10, 2006
  • pp: 8338–8345

Continuous-wave laser characteristics of a Nd3+:LaB3O6 cleavage microchip and the influence of thermal effects

Yujin Chen, Xinghong Gong, Yanfu Lin, Qiguang Tan, Zundu Luo, and Yidong Huang  »View Author Affiliations

Applied Optics, Vol. 45, Issue 32, pp. 8338-8345 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (803 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



With pumping by a Ti:sapphire laser, the cw laser characteristic of a 5.6 at.  % , 0.5 mm thick Nd 3 + : LaB 3 O 6 cleavage microchip in an end-pumped plano–plano resonator is researched. A slope efficiency of up to 49% and a maximum output power of 530 mW are obtained at an absorbed pump power of 1.16 W and an optimal output coupler transmission of 3.2%. Choppers with different duty cycles are used to change the thermal effects in the microchip, and the influences of thermal effects on the laser characteristics of the Nd 3 + : LaB 3 O 6 cleavage microchip are investigated.

© 2006 Optical Society of America

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.6810) Lasers and laser optics : Thermal effects
(160.3380) Materials : Laser materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 10, 2006
Revised Manuscript: July 7, 2006
Manuscript Accepted: July 11, 2006

Yujin Chen, Xinghong Gong, Yanfu Lin, Qiguang Tan, Zundu Luo, and Yidong Huang, "Continuous-wave laser characteristics of a Nd3+:LaB3O6 cleavage microchip and the influence of thermal effects," Appl. Opt. 45, 8338-8345 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Zayhowski and A. Mooradian, "Single-frequency microchip Nd lasers," Opt. Lett. 14, 24-26 (1989). [CrossRef] [PubMed]
  2. J. J. Zayhowski and A. Mooradian, "Frequency tuning of microchip laser using pump-power modulation," IEEE J. Quantum Electron. 28, 1118-1122 (1992). [CrossRef]
  3. J. J. Zayhowski and C. Dill III, "Diode-pumped passively Q-switched picosecond microchip lasers," Opt. Lett. 19, 1427-1429 (1994). [CrossRef] [PubMed]
  4. D. G. Matthews, J. R. Boon, R. S. Conroy, and B. D. Sinclair, "A comparative study of diode pumped microchip laser materials: Nd-doped YVO4, YOS, SFAP, and SVAP," J. Mod Opt. 43, 1079-1087 (1996). [CrossRef]
  5. G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, "A passively Q-switched Yb:YAG microchip laser," Appl. Phys. B 72, 285-287 (2001).
  6. Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004). [CrossRef]
  7. E. Bovero, Z. D. Luo, Y. D. Huang, A. Benayas, and D. Jaque, "Single longitudinal mode laser oscillation from a neodymium aluminium borate stoichiometric crystal," Appl. Phys. Lett. 87, 211108 (2005). [CrossRef]
  8. A. Aznar, R. Sole, M. Aguilo, F. Diaz, U. Griebner, R. Grunwald, and V. Petrov, "Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO4)2/KY(WO4)2 composites with monoclinic structure," Appl. Phys. Lett. 85, 4313-4315 (2004). [CrossRef]
  9. F. Varsanyi, "Surface lasers," Appl. Phys. Lett. 19, 169-171 (1971). [CrossRef]
  10. A. A. Kaminskii and S. N. Bagaev, "Ribbon and sheet miniature crystal lasers" Quantum Electron. 24, 1029-1030 (1994). [CrossRef]
  11. Y. J. Chen, Y. D. Huang, X. Q. Lin, Q. G. Tan, Z. D. Luo, and Y. F. Lin, "Laser emission from unprocessed cleavage microchip," Appl. Phys. Lett. 86, 021115 (2005). [CrossRef]
  12. Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Highly efficient Nd3+:LaB3O6 cleavage microchip laser," J. Appl. Phys. 98, 103104 (2005).
  13. Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Laser performances of Nd:LaB3O6 cleavage microchip passively Q switched with a Cr4+:YAG saturable absorber," Appl. Phys. B 83, 195-201 (2006). [CrossRef]
  14. R. Weber, B. Neuenschwander, and H. P. Weber, "Thermal effects in solid-state laser materials," Opt. Mater. 11, 245-254 (1999). [CrossRef]
  15. T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993). [CrossRef]
  16. D. Jaque, J. Capmany, J. Rams, and J. Garcia Sole, "Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser," J. Appl. Phys. 87, 1042-1048 (2000). [CrossRef]
  17. W. A. Clarkson, "Thermal effects and their mitigation in end-pumped solid-state lasers," J. Phys. 34, 2381-2395 (2001).
  18. Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, "Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal," Chem. Phys. Lett. 397, 282-287 (2004). [CrossRef]
  19. A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, "Guiding effects in Nd:YVO4 microchip lasers operating well above threshold," IEEE J. Quantum Electron. 35, 675-681 (1999). [CrossRef]
  20. E. F. Dolzhenkova, A. N. Shekhovtsov, A. V. Tolmachev, M. F. Dubovik, B. V. Grinyov, V. A. Tarasov, V. N. Baumer, and O. V. Zelenskaya, "Specific morphological features of LaB3O6 single crystals: a new promising material for thin-layer radiation detectors," J. Cryst. Growth 233, 473-476 (2001). [CrossRef]
  21. C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, "Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm," Opt. Commun. 205, 361-365 (2002).
  22. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer-Verlag, 1981).
  23. V. Lupei, N. Pavel, and T. Taira, "Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level," IEEE J. Quantum Electron. 38, 240-245 (2002). [CrossRef]
  24. Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003). [CrossRef]
  25. Z. D. Luo, A. D. Jiang, Y. C. Huang, and M. W. Qiu, "Studies on the self-activated laser crystal: neodymium aluminium borate NdA3(BO3)4," Sci. China , Ser. A: Math., Phys., Astron. 34, 762-768 (1991).
  26. L. Deshazer, "Vanadate crystals exploit diode-pump technology," Laser Focus World 30, 88-93 (1994).
  27. W. Koechner, "Output fluctuations of CW-pumped Nd:YAG lasers," IEEE J. Quantum Electron. 8, 656-661 (1972). [CrossRef]
  28. D. Findlay and R. Clay, "The measurement of internal losses in 4-level lasers," Phys. Lett. 20, 227-228 (1966).
  29. E. M. Levin, C. R. Robbins, and J. L. Waring, "Immiscibility and the system lanthanum oxide-boric oxide," J. Am. Ceram. Soc. 44, 87-91 (1961). [CrossRef]
  30. F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, "Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers," Appl. Phys. Lett. 81, 2145-2147 (2002). [CrossRef]
  31. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1999).
  32. W. R. Risk, "Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses," J. Opt. Soc. Am. B 5, 1412-1423 (1988). [CrossRef]
  33. J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, "Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988). [CrossRef]
  34. N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, "Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening," IEEE J. Quantum Electron. 28, 1179-1187 (1992). [CrossRef]
  35. P. Laporta and M. Brussard, "Design criteria for mode size optimization in diode-pumped solid-state lasers," IEEE J. Quantum Electron. 27, 2319-2326 (1991). [CrossRef]
  36. Y. F. Chen, "Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers," J. Opt. Soc. Am. B 17, 1835-1840 (2000). [CrossRef]
  37. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited