OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 33 — Nov. 20, 2006
  • pp: 8491–8499

High-bandwidth laser frequency stabilization to a fiber-optic delay line

Benjamin S. Sheard, Malcolm B. Gray, and David E. McClelland  »View Author Affiliations

Applied Optics, Vol. 45, Issue 33, pp. 8491-8499 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1926 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Stabilization of laser frequency to interferometers with a large time delay in one arm is of significant interest to space-based gravitational wave detectors such as the Laser Interferometer Space Antenna. A recently proposed technique allows a control bandwidth larger than the inverse delay time to be achieved. We present experimental results demonstrating laser frequency stabilization to an optical fiber delay line. A control bandwidth approximately 50 times the inverse delay time is demonstrated.

© 2006 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(000.2780) General : Gravity
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

Original Manuscript: March 30, 2006
Revised Manuscript: June 15, 2006
Manuscript Accepted: July 10, 2006

Benjamin S. Sheard, Malcolm B. Gray, and David E. McClelland, "High-bandwidth laser frequency stabilization to a fiber-optic delay line," Appl. Opt. 45, 8491-8499 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Bender, K. Danzmann, and the LISA Study Team, Laser Interferometer Space Antenna: Pre-Phase A Report, Rep. MPQ233 (Max Planck Institüt für Quantenoptik, 1998).
  2. H. Faulks, K. Gehbauer, A. Hammesfahr, K. Honnen, U. Johann, G. Kahl, M. Kersten, L. Morgenroth, M. Riede, H. R. Schulte, M. Bisi, S. Cesare, O. Pierre, X. Sembely, L. Vaillon, J. Rodriguez-Canabal, F. Ruedenauer, S. Marcuccio, D. Nicolini, L. Maltecca, M. Peterseim, M. Rodrigues, D. Hayoun, S. Heys, B. J. Kent, I. Butler, D. Robertson, and S. Vitale, Study of the Laser Interferometer Space Antenna, Final Technical Report, Rep. LI-RP-DS-009 (European Space Research and Technology Center, 2000).
  3. A. Hammesfahr, H. Faulks, K. Gebauer, K. Honnen, U. Johann, G. Kahl, M. Kersten, L. Morgenroth, M. Riede, H.-R. Schulte, M. Bisi, S. Cesare, O. Pierre, X. Sembely, L. Vaillon, D. Hayoun, S. Heys, B. J. Kent, F. Rüdenauer, S. Marcuccio, D. Nicolini, L. Maltecca, I. Butler, J. Rodriguez-Canabal, R. Reinhard, T. Edwards, P. Bender, A. Brillet, A. M. Cruise, C. Cutler, K. Danzmann, F. Fidecaro, W. M. Folkner, J. Hough, P. McNamara, M. Peterseim, D. Robertson, M. Rodrigues, A. Rüdiger, M. Sandford, G. Schäfer, R. Schilling, B. Schutz, C. Speake, R. T. Stebbins, T. Sumner, P. Touboul, J.-Y. Vinet, S. Vitale, H. Ward, and W. Winkler, Laser Interferometer Space Antenna: A Cornerstone Mission for the Observation of Gravitational Waves, System and Technology Study Report, Rep. ESA-SCI(2000)11, Modified version 1.05 (European Space Agency, 2000).
  4. K. Danzmann and A. Rüdiger, "LISA technology--concept, status, prospects," Class. Quantum Grav. 20, S1-S9 (2003). [CrossRef]
  5. J. W. Armstrong, F. B. Estabrook, and M. Tinto, "Time-delay interferometry for space-based gravitational wave searches," Astrophys. J. 527, 814-826 (1999). [CrossRef]
  6. F. B. Estabrook, M. Tinto, and J. W. Armstrong, "Time-delay analysis of LISA gravitational wave data: Elimination of spacecraft motion effects," Phys. Rev. D 62, 042002 (2000). [CrossRef]
  7. S. V. Dhurandhar, K. Rajesh Nayak, and J.-Y. Vinet, "Algebraic approach to time-delay data analysis for LISA," Phys. Rev. D 65, 102002 (2002). [CrossRef]
  8. D. A. Shaddock, "Operating LISA as a Sagnac interferometer," Phys. Rev. D 69, 022001 (2004). [CrossRef]
  9. B. S. Sheard, M. B. Gray, D. E. McClelland, and D. A. Shaddock, "Laser frequency stabilization by locking to a LISA arm," Phys. Lett. A 320, 9-21 (2003). [CrossRef]
  10. N. J. Cornish and R. W. Hellings, "The effects of orbital motion on LISA time delay interferometry," Class. Quantum Grav. 20, 4851-4860 (2003). [CrossRef]
  11. H. Billing, K. Maischberger, A. Rüdiger, R. Schilling, L. Schnupp, and W. Winkler, "The Munich Gravitational Wave Detector Using Laser Interferometry," in Quantum Optics, Experimental Gravity and Measurement Theory, P.Meystre and M.O.Scully, eds. (Plenum, 1983), pp. 525-566.
  12. D. H. Shoemaker, W. Winkler, K. Maischberger, A. Rüdiger, R. Schilling, and L. Schnupp, "Progress with the Garching 30-meter prototype for a gravitational wave detector," in Proceedings of the Fourth Marcel Grossmann Meeting, R. Ruffini, ed. (North-Holland, 1986), pp. 605-614.
  13. R. Spero, "The Caltech laser-interferometeric gravitational wave detector," in Proceedings of the Fourth Marcel Grossmann Meeting, R. Ruffini, ed. (North-Holland, 1986), pp. 615-620.
  14. P. Fritschel, R. Bork, G. González, N. Mavalvala, D. Ouimette, H. Rong, D. Sigg, and M. Zucker, "Readout and control of a power-recycled interferometric gravitational-wave antenna," Appl. Opt. 40, 4988-4998 (2001). [CrossRef]
  15. A. F. García Marín, G. Heinzel, R. Schilling, A. Rüdiger, V. Wand, F. Steier, F. Guzmán Cervantes, A. Weidner, O. Jennrich, F. J. Meca Meca, and K. Danzmann, "Phase locking to a LISA arm: first results on a hardware model," Class. Quantum Grav. 22, S235-S242 (2005). [CrossRef]
  16. J. I. Thorpe, R. J. Cruz, S. R. Sankar, G. Mueller, and P. McNamara, "First step toward a benchtop model of the Laser Interferometer Space Antenna," Opt. Lett. 29, 2843-2845 (2004). [CrossRef]
  17. J. I. Thorpe, R. J. Cruz, S. Sankar, and G. Mueller, "Electronic phase delay--A first step towards a bench-top model of LISA," Class. Quantum Grav. 22, S227 (2005). [CrossRef]
  18. J. I. Thorpe and G. Mueller, "Experimental verification of arm-locking for LISA using electronic phase delay," Phys. Lett. A 342, 199-204 (2005). [CrossRef]
  19. M. Martinelli, "A universal compensator for polarization changes induced by birefringence on a retracing beam," Opt. Comm. 72, 341-344 (1989). [CrossRef]
  20. N. C. Pistoni and M. Matinelli, "Polarization noise suppression in retracing optical fiber circuits," Opt. Lett. 16, 711 (1991). [CrossRef] [PubMed]
  21. S. Yamashita, K. Hotate, and M. Ito, "Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror," J. Lightwave Technol. 14, 385-390 (1996). [CrossRef]
  22. A. D. Kersey, M. J. Marrone, and M. A. Davis, "Polarisation-insensitive fibre optic Michelson interferometer," Electron. Lett. 21, 518-520 (1991). [CrossRef]
  23. W. H. Glenn, "Noise in interferometric optical systems: an optical nyquist theorem," IEEE J. Quantum. Electron. 25, 1218-1224 (1989). [CrossRef]
  24. K. H. Wanser, "Fundamental phase noise limit in optical fibres due to temperature fluctuations," Electron. Lett. 28, 53-54 (1992). [CrossRef]
  25. S. Knudsen, A. B. Tveten, and A. Dandridge, "Measurements of fundamental thermal induced phase fluctuations in the fiber of a Sagnac interferometer," IEEE Photon. Technol. Lett. 7, 90-92 (1995). [CrossRef]
  26. K. Kråkenes and K. Bløtekjær, "Comparison of fiber-optic Sagnac and Mach-Zehnder interferometers with respect to thermal processes in the fiber," J. Lightwave Technol. 13, 682-686 (1995). [CrossRef]
  27. K. Bløtekjær, "Fundamental noise sources which limit the ultimate resolution of fiber-optic sensors," in Proc. SPIE, 3555, 1-12 (1998).
  28. V. Annovazzi-Lodi, S. Donati, and S. Merlo, "Thermodynamic phase noise in fiber interferometers," Opt. Quantum. Electron. 28, 43-49 (1996). [CrossRef]
  29. S. Chang, C. C. Hsu, T. H. Huang, W. C. Chuang, Y. S. Tsai, J. Y. Shieh, and C. Y. Leung, "Heterodyne inteferometric measurement of the thermo-optic coefficient of single mode fiber," Chin. J. Phys. 38, 437-442 (2000).
  30. A. L. Schawlow and C. H. Townes, "Infrared and optical masers," Phys. Rev. 112, 1940-1949 (1958). [CrossRef]
  31. N. Uehara and K. Ueda, "193-mHz beat linewidth of frequency-stabilized laser-diode-pumped Nd:YAG ring lasers," Opt. Lett. 18, 505-507 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited