OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 33 — Nov. 20, 2006
  • pp: 8547–8559

Tomographic imaging of oxygen by phosphorescence lifetime

Sovia V. Apreleva, David F. Wilson, and Sergei A. Vinogradov  »View Author Affiliations


Applied Optics, Vol. 45, Issue 33, pp. 8547-8559 (2006)
http://dx.doi.org/10.1364/AO.45.008547


View Full Text Article

Enhanced HTML    Acrobat PDF (1292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Imaging of oxygen in tissue in three dimensions can be accomplished by using the phosphorescence quenching method in combination with diffuse optical tomography. We experimentally demonstrate the feasibility of tomographic imaging of oxygen by phosphorescence lifetime. Hypoxic phantoms were immersed in a cylinder with scattering solution equilibrated with air. The phantoms and the medium inside the cylinder contained near-infrared phosphorescent probe(s). Phosphorescence at multiple boundary sites was registered in the time domain at different delays ( t d ) following the excitation pulse. The duration of the excitation pulse ( t p ) was regulated to optimize the contrast in the images. The reconstructed integral intensity images, corresponding to delays t d , were fitted exponentially to give the phosphorescence lifetime image, which was converted into the three-dimensional image of oxygen concentrations in the volume. The time-independent diffusion equation and the finite element method were used to model the light transport in the medium. The inverse problem was solved by the recursive maximum entropy method. We provide what we believe to be the first example of oxygen imaging in three dimensions using long-lived phosphorescent probes and establish the potential of these probes for diffuse optical tomography.

© 2006 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(290.0290) Scattering : Scattering
(290.7050) Scattering : Turbid media

History
Original Manuscript: April 10, 2006
Revised Manuscript: July 18, 2006
Manuscript Accepted: July 19, 2006

Virtual Issues
Vol. 1, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Sovia V. Apreleva, David F. Wilson, and Sergei A. Vinogradov, "Tomographic imaging of oxygen by phosphorescence lifetime," Appl. Opt. 45, 8547-8559 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-33-8547


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. B. Arden, R. L. Sidman, W. Arap, and R. O. Schlingemann, "Spare the rod and spoil the eye," Br. J. Ophthamol. 89, 764-769 (2005). [CrossRef]
  2. F. Pena and A. M. Ramirez, "Hypoxia-induced changes in neuronal network properties," Mol. Neurobiol. 32, 251-283 (2005). [CrossRef] [PubMed]
  3. D. M. Ferriero, "Medical progress--neonatal brain injury," New Eng. J. Med. 351, 1985-1995 (2004). [CrossRef] [PubMed]
  4. S. M. Evans and C. J. Koch, "Prognostic significance of tumor oxygenation in humans," Cancer Lett. 195, 1-16 (2003). [CrossRef] [PubMed]
  5. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, "The role of diffuse optical spectroscopy in the clinical management of breast cancer," Dis. Markers 19, 95-105 (2003).
  6. J. R. Ballinger, "Imaging hypoxia in tumors," Semin. Nucl. Med. 31, 321-329 (2001). [CrossRef] [PubMed]
  7. J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, "An optical method for measurement of dioxygen concentration based on quenching of phosphorescence," J. Biol. Chem 262, 5476-5482 (1987). [PubMed]
  8. D. F. Wilson, and S. A. Vinogradov, "Tissue oxygen measurements using phosphorescence quenching," in Handbook of Biomedical Fluorescence, M.-A. Mycek and B. W. Pogue, eds. (Marcel Dekker, 2003) pp. 637-662. [CrossRef]
  9. J. Saltiel and B. W. Atwater, "Spin-statistical factors in diffusion controlled reactions," in Advances in Photochemistry, D. H. Volman, G. S. Hammond, and K. Gollnick, eds. (Wiley, 1988) pp. 1-90. [CrossRef]
  10. W. L. Rumsey, J. M. Vanderkooi, and D. F. Wilson, "Imaging of phosphorescence: a novel method for measuring the distribution of oxygen in perfused tissue," Science 241, 1649-1651 (1988). [CrossRef] [PubMed]
  11. S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, "Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors," Biophys. J. 70, 1609-1617 (1996). [CrossRef] [PubMed]
  12. O. S. Finikova, A. V. Cheprakov, and S. A. Vinogradov, "Synthesis and luminescence of soluble meso-unsubstituted tetrabenzo- and tetranaphtho[2,3]porphyrins," J. Org. Chem. 70, 9562-9572 (2005), and references therein. [CrossRef] [PubMed]
  13. V. V. Rozhkov, D. F. Wilson, and S. A. Vinogradov, "Phosphorescent Pd porphyrin-dendrimers: tuning core accessibility by varying the hydrophobicity of the dendritic matrix," Macromolecules 35, 1991-1993 (2002). [CrossRef]
  14. I. B. Rietveld, E. Kim, and S. A. Vinogradov, "Dendrimers with tetrabenzoporphyrin cores: near-infrared phosphors for in vivo oxygen imaging," Tetrahedron 59, 3821-3831 (2003). [CrossRef]
  15. E. Shives, Y. Xu, and H. Jiang, "Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye," Opt. Express 10, 1557-1562 (2002). [PubMed]
  16. V. Y. Soloviev, D. F. Wilson, and S. A. Vinogradov, "Phosphorescence lifetime imaging in turbid media: the forward problem," Appl. Opt. 42, 113-123 (2003). [CrossRef] [PubMed]
  17. V. Y. Soloviev, D. F. Wilson, and S. A. Vinogradov, "Phosphorescence lifetime imaging in turbid media: the inverse problem and experimental image reconstruction," Appl. Opt. 43, 564-574 (2004). [CrossRef] [PubMed]
  18. M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissue," Appl. Opt. 33, 1963-1974 (1994). [CrossRef] [PubMed]
  19. M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996). [CrossRef] [PubMed]
  20. V. Ntziachristos and R. Weissleder, "CCD-based scanner for three-dimensional fluorescence-mediated diffuse optical tomography of small animals," Med. Phys. 29, 803-809 (2002). [CrossRef] [PubMed]
  21. A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005). [CrossRef] [PubMed]
  22. E. M. Sevick-Muraca and C. L. Burch, "Origin of phosphorescence signals re-emitted from tissues," Opt. Lett. 19, 1928-1930 (1994). [CrossRef] [PubMed]
  23. A. Chen and E. M. Sevick-Muraca, "On the use of phophorescent and fluorescent dyes for lifetime-based imaging within tissues," in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human Studies II, B. Chance and A. A. Alfano, eds. (SPIE Press, 1997), pp. 129-138. [PubMed]
  24. S. V. Apreleva, S. V., D. F. Wilson, and S. A. Vinogradov, "Feasibility of diffuse optical imaging with long-lived luminescent probes," Opt. Lett. 31, 1082-1084 (2006). [CrossRef] [PubMed]
  25. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method (Butterworth-Heinemann, 2000).
  26. J. Skilling, Maximum Entropy and Bayesian Methods, J. Skilling, ed. (Kluver, 1989) p. 45.
  27. S. R. Arridge, M. Cope, and D. T. Delpy, "The theoretical basis for the determination of optical path lengths in tissue: temporal and frequency analysis," Phys. Med. Biol. 37, 1531-1560 (1992). [CrossRef] [PubMed]
  28. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  29. J. H. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE Trans. Biomed. Eng. 44, 810-822 (1997). [CrossRef] [PubMed]
  30. H. Jiang, "Frequency domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations," Appl. Opt. 37, 5337-5343 (1998). [CrossRef]
  31. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003). [CrossRef] [PubMed]
  32. M. C. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, 1967).
  33. S. R. Arridge and J. C. Hebden, "Optical imaging in medicine: II. Modeling and reconstruction," Phys. Med. Biol. 42, 841-853 (1997). [CrossRef] [PubMed]
  34. A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, "Optical tomography using the time-independent equation of radiative transfer--Part 1: Forward model," J. Quant. Spectrosc. Radiat. Transf. 72, 691-713 (2002). [CrossRef]
  35. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005). [CrossRef]
  36. V. A. Markel, "Modified spherical harmonics method for solving the radiative transport equation," Waves Random Media 14, L13-L19 (2004). [CrossRef]
  37. The phosphorescence quantum yield Phi(r) at the point r inside the medium is dependent on the local concentration of the quencher (oxygen) and is proportional to the phosphorescence lifetime τ(r). The quantum yield in the absence of the quencher Phi0 is the same for all probe molecules throughout the volume, provided that the probe molecules do not interact with the environment. Dendritically protected phosphorescent probes are designed to exclude such interactions. They have been shown to retain their photophysical properties in physiological environments, e.g., in the blood serum and interstitial fluid.
  38. A. A. Istratov and O. F. Vyvenko, "Exponential analysis in physical phenomena," Rev. Sci. Instrum. 70, 1233-1257 (1999). [CrossRef]
  39. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993). [CrossRef] [PubMed]
  40. B. W. Pogue, S. Geimer, T. O. McBride, S. D. Jiang, U. L. Osterberg, and K. D. Paulsen, "Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction," Appl. Opt. 40, 588-600 (2001). [CrossRef]
  41. G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. U.S.A. 102, 18252-18257 (2005). [CrossRef] [PubMed]
  42. J. G. McWhirter and E. R. Pike, "On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind," J. Phys. 11, 1729-1745 (1978). [CrossRef]
  43. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer, 1996). [CrossRef]
  44. A. Douiri, M. Schweiger, J. Railey, and S. Arridge, "Local diffusion regularization method for optical tomography reconstruction using robust statistics," Opt. Lett. 30, 2439-2441 (2005), and references therein. [CrossRef] [PubMed]
  45. H. W. Engl and G. Landl, "Convergence rates for maximum-entropy regularization," SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 30, 1509-1536 (1993).
  46. A. Tikhonov and V. Arsenin, Solutions of Ill-Posed Problems (Wiley, London, 1977).
  47. G. Christakos, Modern Spatiotemporal Geostatistics (Oxford U. Press 2000).
  48. E. T. Janes, Papers on Probability, Statistics and Statistical Physics (Reidel, 1983).
  49. A. K. Livesey and J. Skilling, "Maximum entropy theory," Acta Crystal. A41, 113-122 (1985). [CrossRef]
  50. J. Skilling and R. K. Bryan, "Maximum entropy image reconstruction: general algorithm," Mon. Not. R. Astron. Soc. 211, 111-124 (1984).
  51. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography," Proc. Natl. Acad. Sci. U.S.A. 99, 9619-9624 (2002). [CrossRef] [PubMed]
  52. S. A. Vinogradov and D. F. Wilson, "Recursive maximum entropy algorithm and its application to the luminescence lifetime distribution recovery," Appl. Spectrosc. 54, 849-855 (2000). [CrossRef]
  53. L. S. Ziemer, W. M. F. Lee, S. A. Vinogradov, C. Sehgal, and D. F. Wilson, "Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence," J. Appl. Physiol. 98, 1503-1510 (2005). [CrossRef]
  54. R. I. Shrager, "Quadratic programming for nonlinear regression," Commun. ACM 15, 41-45 (1972). [CrossRef]
  55. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization (Academic, 1981).
  56. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. FlannerlyNumerical Recipes in C. The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, 1992).
  57. S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dugan, and D. F. Wilson, "Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples," Rev. Sci. Instrum. 72, 3396-3406 (2001). [CrossRef]
  58. I. Dunphy, S. A. Vinogradov, and D. F. Wilson, "Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence," Anal. Biochem. 310, 191-198 (2002). [CrossRef] [PubMed]
  59. Similar porphyrin-dendrimers have been described in S. A. Vinogradov, "Arylamide dendrimers with flexible linkers via haloacyl halide method," Org. Lett. 7, 1761-1764 (2005). [CrossRef] [PubMed]
  60. E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, "Measurements of scattering and absorption changes in muscle and brain," Phil. Trans. R. Soc. London , Ser. B 352, 727-735 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited