OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 34 — Dec. 1, 2006
  • pp: 8790–8805

Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements

Eyk Boesche, Piet Stammes, Thomas Ruhtz, Réne Preusker, and Juergen Fischer  »View Author Affiliations


Applied Optics, Vol. 45, Issue 34, pp. 8790-8805 (2006)
http://dx.doi.org/10.1364/AO.45.008790


View Full Text Article

Enhanced HTML    Acrobat PDF (2598 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the sensitivity of the degree of linear polarization in the Sun's principal plane as a function of aerosol microphysical parameters: the real and imaginary parts of the refractive index, the median radius and geometric standard deviation of the bimodal size distribution (both fine and coarse modes), and the relative number weight of the fine mode at a wavelength of 675 nm . We use Mie theory for single-scattering simulations and the doubling–adding method with the inclusion of polarization for multiple scattering. It is shown that the behavior of the degree of linear polarization is highly sensitive to both the small mode of the bimodal size distribution and the real part of the refractive index of aerosols, as well as to the aerosol optical thickness; whereas not all parameters influence the polarization equally. A classification of the importance of the input parameters is given. This sensitivity study is applied to an analysis of ground-based polarization measurements. For the passive remote sensing of microphysical and optical properties of aerosols, a ground-based spectral polarization measuring system was built, which aims to measure the Stokes parameters I, Q, and U in the visible (from 410 to 789 nm ) and near-infrared (from 674 to 995 nm ) spectral range with a spectral resolution of 7 nm in the visible and 2.4 nm in the near infrared. We compare polarization measurements taken with radiative transfer simulations under both clear- and hazy-sky conditions in an urban area (Cabauw, The Netherlands, 51.58 °   N , 4.56 °   E ). Conclusions about the microphysical properties of aerosol are drawn from the comparison.

© 2006 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(260.5430) Physical optics : Polarization
(280.1310) Remote sensing and sensors : Atmospheric scattering

ToC Category:
Remote Sensing

History
Original Manuscript: March 30, 2006
Revised Manuscript: July 7, 2006
Manuscript Accepted: August 16, 2006

Citation
Eyk Boesche, Piet Stammes, Thomas Ruhtz, Réne Preusker, and Juergen Fischer, "Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements," Appl. Opt. 45, 8790-8805 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-34-8790

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited