OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 35 — Dec. 10, 2006
  • pp: 9013–9020

Extending the continuous tuning range of an external-cavity diode laser

Kevin S. Repasky, Amin R. Nehrir, Justin T. Hawthorne, Gregg W. Switzer, and John L. Carlsten  »View Author Affiliations


Applied Optics, Vol. 45, Issue 35, pp. 9013-9020 (2006)
http://dx.doi.org/10.1364/AO.45.009013


View Full Text Article

Enhanced HTML    Acrobat PDF (1186 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The continuous tuning range of an external-cavity diode laser can be extended by making small corrections to the external-cavity length through an electronic feedback loop so that the cavity resonance condition is maintained as the laser wavelength is tuned. By maintaining the cavity resonance condition as the laser is tuned, the mode hops that typically limit the continuous tuning range of the external-cavity diode laser are eliminated. We present the design of a simple external-cavity diode laser based on the Littman–Metcalf external-cavity configuration that has a measured continuous tuning range of 1   GHz without an electronic feedback loop. To include the electronic feedback loop, a small sinusoidal signal is added to the drive current of the laser diode creating a small oscillation of the laser power. By comparing the phase of the modulated optical power with the phase of the sinusoidal drive signal using a lock-in amplifier, an error signal is created and used in an electronic feedback loop to control the external-cavity length. With electronic feedback, we find that the continuous tuning range can be extended to over 65   GHz . This occurs because the electronic feedback maintains the cavity resonance condition as the laser is tuned. An experimental demonstration of this extended tuning range is presented in which the external-cavity diode laser is tuned through an absorption feature of diatomic oxygen near 760   nm .

© 2006 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5960) Lasers and laser optics : Semiconductor lasers
(280.3420) Remote sensing and sensors : Laser sensors
(300.6260) Spectroscopy : Spectroscopy, diode lasers

History
Original Manuscript: July 19, 2006
Revised Manuscript: August 24, 2006
Manuscript Accepted: August 29, 2006

Citation
Kevin S. Repasky, Amin R. Nehrir, Justin T. Hawthorne, Gregg W. Switzer, and John L. Carlsten, "Extending the continuous tuning range of an external-cavity diode laser," Appl. Opt. 45, 9013-9020 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-35-9013


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Repasky, J. A. Shaw, J. L. Carlsten, M. D. Obland, L. S. Meng, and D. S. Hoffman, "Diode laser transmitter for water vapor DIAL measurements," in Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), Vol. 3, pp. 1947-1950. [CrossRef]
  2. J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, "Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor," Appl. Opt. 43, 3110-3121 (2004). [CrossRef] [PubMed]
  3. M. D. Obland, L. S. Meng, K. S. Repasky, J. A. Shaw, and J. L. Carlsten, "Progress toward a water-vapor differential absorption lidar (DIAL) using a widely tunable amplified diode laser source," U. N. Singh , ed., Laser Remote Sensing for Environmental Monitoring VI, Proc. SPIE 5887, 205-215 (2005).
  4. Q.-V. Nguyen, R. W. Dibble, and T. Day, "High-resolution oxygen absorption spectrum obtained with an external-cavity continuously tunable diode laser," Opt. Lett. 19, 2134-2136 (1994). [CrossRef] [PubMed]
  5. D. Aumiler, T. Ban, and G. Pichler, "High resolution measurements of the pressure broadening and shift of the rubidium 52S1/2-62P3/2 line by argon and helium," Phys. Rev. A 70, 032723(1)-032723(5) (2004). [CrossRef]
  6. G. J. Koch, A. L. Cook, C. M. Fitzgerald, and A. N. Dharamsi, "Frequency stabilization of a diode laser to absorption lines of water vapor in the 944-nm wavelength region," Opt. Eng. 40, 525-528 (2001). [CrossRef]
  7. M. G. Littman and H. J. Metcalf, "Spectrally narrow pulsed dye laser without beam expander," Appl. Opt. 17, 2224-2227 (1978). [CrossRef] [PubMed]
  8. P. McNicholl and H. J. Metcalf, "Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings," Appl. Opt. 24, 2757-2761 (1985). [CrossRef] [PubMed]
  9. M. de Labachelerie and G. Passedat, "Mode-hop suppression of Littrow grating-tuned lasers," Appl. Opt. 32, 269-274 (1993). [CrossRef] [PubMed]
  10. Y.-P. Lan, R.-P. Pan, and C.-L. Pan, "Mode-hop-free fine tuning of an external-cavity diode laser with an intracavity liquid crystal cell," Opt. Lett. 29, 510-512 (2004). [CrossRef] [PubMed]
  11. G. W. Switzer, "Semiconductor laser transmitter for water vapor lidar on Mars," Ph.D. dissertation (Montana State University, Bozeman, Mont., 1998), pp. 37-49.
  12. L. Nilse, H. J. Davies, and C. S. Adams, "Synchronous tuning of external cavity diode lasers: the case for an optimum pivot point," Appl. Opt. 38, 548-553 (1999). [CrossRef]
  13. T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, "Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet," Opt. Rev. 5, 267-270 (1998). [CrossRef]
  14. V. P. Gerginov, Y. V. Dancheva, M. A. Taslakov, and S. S. Cartaleva, "Frequency tunable monomode diode laser at 670 nm for high resolution spectroscopy," Opt. Commun. 149, 162-169 (1998). [CrossRef]
  15. C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, "Mode-hop-free tuning over 80 GHz of an external cavity diode laser without antireflection coating," Rev. Sci. Instrum. 72, 3811-3815 (2001). [CrossRef]
  16. S. Mattori, T. Saitoh, S. Kinugawa, H. Kameyama, S. Ozaki, and J. Shirono, "A mode hopping suppressed external-cavity semiconductor laser using feedback control," IEICE Trans. Electron. E85-C98-103 (2002).
  17. K. G. Libbrecht and J. L. Hall, "A low-noise high-speed diode laser current controller," Rev. Sci. Instrum. 64, 2133-2135 (1993). [CrossRef]
  18. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001," J. Quant. Spectrosc. Radiat. Transfer 82, 5-44 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited