OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 36 — Dec. 20, 2006
  • pp: 9151–9159

Optical fiber design and the trapping of Čerenkov radiation

S. H. Law, S. C. Fleming, N. Suchowerska, and D. R. McKenzie  »View Author Affiliations

Applied Optics, Vol. 45, Issue 36, pp. 9151-9159 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (2482 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Čerenkov radiation is generated in optical fibers immersed in radiation fields and can interfere with signal transmission. We develop a theory for predicting the intensity of Čerenkov radiation generated within the core of a multimode optical fiber by using a ray optic approach and use it to make predictions of the intensity of radiation transmitted down the fiber in propagating modes. The intensity transmitted down the fiber is found to be dominated by bound rays with a contribution from tunneling rays. It is confirmed that for relativistic particles the intensity of the radiation that is transmitted along the fiber is a function of the angle between the particle beam and the fiber axis. The angle of peak intensity is found to be a function of the fiber refractive index difference as well as the core refractive index, with larger refractive index differences shifting the peak significantly toward lower angles. The angular range of the distribution is also significantly increased in both directions by increasing the fiber refractive index difference. The intensity of the radiation is found to be proportional to the cube of the fiber core radius in addition to its dependence on refractive index difference. As the particle energy is reduced into the nonrelativistic range the entire distribution is shifted toward lower angles. Recommendations on minimizing the quantity of Čerenkov light transmitted in the fiber optic system in a radiation field are given.

© 2006 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4510) Fiber optics and optical communications : Optical communications

Original Manuscript: May 9, 2006
Revised Manuscript: June 28, 2006
Manuscript Accepted: September 1, 2006

S. H. Law, S. C. Fleming, N. Suchowerska, and D. R. McKenzie, "Optical fiber design and the trapping of Cerenkov radiation," Appl. Opt. 45, 9151-9159 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd ed. (Addison-Wesley, 1962), p. 494.
  2. L. D. Gladney, "Cerenkov Radiation," University of Pennsylvania, Department of Physics and Astronomy, 2000, retrieved 2004, http://dept.physics.upenn.edu/balloon/cerenkov_radiation.html.
  3. B. L. Pruett, R. T. Peterson, D. E. Smith, L. D. Looney, and R. N. Shelton, Jr., "Gamma-ray to Cerenkov-light conversion efficiency for pure-silica-core optical fibers," in Proc. SPIE 506, 10-17 (1984).
  4. S. F. de Boer, A. S. Beddar, and J. A. Rawlinson, "Optical filtering and spectral measurements of radiation-induced light in plastic scintillation dosimetry," Phys. Med. Biol. 38, 945-958 (1993). [CrossRef]
  5. S. Law and A. S. Beddar, "Capture of Cerenkov radiation generated on the axis of an optical fibre when the fibre axis lies on the Cerenkov Cone," presented at the Conference on the Optical Internet/Australian Conference on Optical Fibre Technology 2003, Melbourne, Australia, 13-16 July 2003.
  6. M. R. Arnfield, H. E. Gaballa, R. D. Zwicker, Q. Islam, and R. Schmidt-Ullrich, "Radiation-induced light in optical fibers and plastic scintillators: application to brachytherapy dosimetry," IEEE Trans. Nucl. Sci. 43, 2077-2084 (1996). [CrossRef]
  7. A. S. Beddar, T. R. Mackie, and F. H. Attix, "Water-equivalent plastic scintillation detectors for high-energy beam dosimetry. II. Properties and measurements," Phys. Med. Biol. 37, 1901-1913 (1992). [CrossRef] [PubMed]
  8. A. S. Beddar, T. R. Mackie, and F. H. Attix, "Water-equivalent plastic scintillation detectors for high-energy beam dosimetry. I. Physical characteristics and theoretical considerations," Phys. Med. Biol. 37, 1883-1900 (1992). [CrossRef] [PubMed]
  9. E. Auffray, D. Bouttet, I. Dafinei, J. Fay, P. Lecoq, J. A. Mares, M. Martini, G. Maze, F. Meinardi, B. Moine, M. Nikl, C. Pedrini, M. Poulain, M. Schneegans, S. Tavernier, and A. Vedda, "Cerium-doped heavy metal fluoride glasses, a possible alternative for electromagnetic calorimetry," Nucl. Instrum. Methods Phys. Res A 380, 524-536 (1996). [CrossRef]
  10. S. Gripp, F. W. Haesing, H. Bueker, and G. Schmitt, "Clinical in vivo dosimetry using optical fibers," Radiat. Oncol. Invest. 6, 142-149 (1998). [CrossRef]
  11. F. Pain, P. Laniece, R. Mastrippolito, Y. Charon, D. Comar, V. Leviel, J. F. Pujol, and L. Valentin, "SIC, an intracerebral radiosensitive probe for in vivo neuropharmacology investigations in small laboratory animals: theoretical considerations and practical characteristics," IEEE Trans. Nucl. Sci. 47, 25-32 (2000). [CrossRef]
  12. J. C. Polf, S. W. S. McKeever, M. S. Akselrod, and S. Holmstrom, "A real-time, fibre-optic dosimetry system using Al2O3 fibres," Radiat. Prot. Dosim. 100, 301-304 (2002).
  13. M. Geso, N. Robinson, W. Schumer, and K. Williams, "Use of water-equivalent plastic scintillator for intravascular brachytherapy dosimetry," Australas. Phys. Eng. Sci. Med. 27, 5-10 (2004). [CrossRef] [PubMed]
  14. M. C. Aznar, C. E. Andersen, L. Botter-Jensen, S. A. J. Back, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, "Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams," Phys. Med. Biol. 49, 1655-1669 (2004). [CrossRef] [PubMed]
  15. J. M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. C. Venhes, J. Tillier, N. Bellaize, C. LeBrun, B. Tamain, K. Mercier, and J. C. Motin, "Scintillating fiber dosimeter for radiation therapy accelerator," IEEE Trans. Nucl. Sci. 49, 2223-2227 (2002). [CrossRef]
  16. B. L. Justus, P. Falkenstein, A. L. Huston, M. C. Plazas, H. Ning, and R. W. Miller, "Gated fiber-optic-coupled detector for in vivo real-time radiation dosimetry," Applied Optics 43, 1663-1668 (2004). [CrossRef] [PubMed]
  17. M. A. Clift, R. A. Sutton, and D. V. Webb, "Dealing with Cerenkov radiation generated in organic scintillator dosimeters by bremsstrahlung beams," Phys. Med. Biol. 45, 1165-1182 (2000). [CrossRef] [PubMed]
  18. M. A. Clift, P. N. Johnston, and D. V. Webb, "A temporal method of avoiding the Cerenkov radiation generated in organic scintillator dosimeters by pulsed mega-voltage electron and photon beams," Phys. Med. Biol. 47, 1421-1433 (2002). [CrossRef] [PubMed]
  19. A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman & Hall, 1983).
  20. E. W. Weisstein, "Ellipse" (MathWorld-A Wolfram Web Resource, 1999), retrieved 2004, http://mathworld.wolfram.com/Ellipse.html.References.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited