OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 36 — Dec. 20, 2006
  • pp: 9160–9167

Analysis of optical damage mechanisms in hollow-core waveguides delivering nanosecond pulses from a Q-switched Nd:YAG laser

J. P. Parry, T. J. Stephens, J. D. Shephard, J. D. C. Jones, and D. P. Hand  »View Author Affiliations


Applied Optics, Vol. 45, Issue 36, pp. 9160-9167 (2006)
http://dx.doi.org/10.1364/AO.45.009160


View Full Text Article

Enhanced HTML    Acrobat PDF (547 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hollow-core waveguides consisting of a glass capillary tube with an internal reflective coating are capable of delivering pulse energies of tens of millijoules with improved focusability compared to step index fibers of similar core diameter. We demonstrate the capability of these fibers to deliver high-power Q-switched pulses at the fundamental ( 1064   nm ) , second ( 532   nm ) , and third ( 355   nm ) harmonics of a Nd:YAG laser, both in terms of peak power and beam quality delivered. In terms of peak power delivery, the primary limitation is the occurrence of bend-induced optical damage to the reflective coating. The damage mechanism and the influential factors are analyzed, in particular, the dependence upon the number of guided modes, core diameter, coating thicknesses, and input polarization alignment.

© 2006 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

History
Original Manuscript: May 30, 2006
Manuscript Accepted: August 14, 2006

Virtual Issues
Vol. 2, Iss. 1 Virtual Journal for Biomedical Optics

Citation
J. P. Parry, T. J. Stephens, J. D. Shephard, J. D. C. Jones, and D. P. Hand, "Analysis of optical damage mechanisms in hollow-core waveguides delivering nanosecond pulses from a Q-switched Nd:YAG laser," Appl. Opt. 45, 9160-9167 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-36-9160


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. P. Hand, J. D. Entwistle, R. R. J. Maier, A. Kuhn, C. A. Greated, and J. D. C. Jones, "Fibre optic beam delivery system for high peak power laser PIV illumination," Meas. Sci. Technol. 10, 239-245 (1999). [CrossRef]
  2. Y. Matsuura, G. Takada, Y. Yamamoto, Y.-W. Shi, and M. Miyagi, "Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers," Appl. Opt. 41, 442-445 (2002). [CrossRef] [PubMed]
  3. Y. Hagiwara, A. Hongo, and M. Obara, "Ablation processing of biomedical materials with double-pulse femto-second laser through hollow fiber," in Commercial and Biomedical Applications of Ultrafast Lasers V, Proc SPIE 5714, 283-289 (2005).
  4. S. Sato, H. Ashida, T. Arai, Y.-W. Shi, Y. Matsuura, and M. Miyagi, "Vacuum-cored hollow waveguide for transmission of high energy, nanosecond Nd:YAG laser pulses and its application to biological tissue ablation," Opt. Lett. 25, 49-51 (2000). [CrossRef]
  5. K. Iwai, Y.-W. Shi, K. Nito, Y. Matsuura, T. Kasai, M. Miyagi, S. Saito, Y. Arai, N. Ioritani, Y. Okagami, M. Nemec, J. Sulc, H. Jelinkova, M. Zavoral, O. Kohler, and P. Drlik, "Erbium:YAG laser lithotripsey by use of a flexible hollow waveguide with an end-scaling cap," Appl. Opt. 42, 2431-2435 (2003). [CrossRef] [PubMed]
  6. A. P. Yalin, M. DeFoort, B. Willson, Y. Matsuura, and M. Miyagi, "Use of hollow-core fibers to deliver nanosecond Nd:YAG laser pulses to form sparks in gases," Opt. Lett. 30, 2083-2085 (2005). [CrossRef] [PubMed]
  7. R. R. J. Maier, D. P. Hand, A. Kuhn, P. Blair, M. R. Taghizadeh, and J. D. C. Jones, "Fiber optic beam delivery of nano-second Nd:YAG laser pulses for micro-machining," in Proceedings ICALEO Laser Microfabrication Conference (Laser Institute of America, 1999), pp. 204-218.
  8. T. J. Stephens, M. J. Haste, J. P. Parry, D. P. Towers, Y. Matsuura, Y.-W. Shi, M. Miyagi, and D. P. Hand, "Hollow-core waveguides for particle image velocimetry," Meas. Sci. Technol. 16, 1119-1125 (2005). [CrossRef]
  9. M. C. Jermy, T. Noel, and W. G. Doherty, "Laser induced fluorescence measurements of the thickness of fuel films on the combustion chamber surface of a gasoline SI engine," presented at the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon (2004), http://in3.dem.ist.utl.pt/lxlaser2004/pdf/paper_17_2.pdf.
  10. J. P. Feist, A. L. Heyes, K. L. Choy, and J. R. Nicholls, "Thermographic phosphor thermometry: recent development for applications in gas turbines," in Optical Methods for Data Processing in Heat and Fluid Flow, C. C. Greated and J. M. Buick, eds. (IMechE, 2002).
  11. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, "Photonic band-gap guidance in optical fibres," Science 282, 1476-1478 (1998). [CrossRef] [PubMed]
  12. J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. S. Russell, and B. J. Mangan, "High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers," Opt. Express 12, 717-723 (2004). [CrossRef] [PubMed]
  13. J. D. Shephard, F. Couny, P. S. J. Russell, J. D. C. Jones, J. C. Knight, and D. P. Hand, "Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications," Appl. Opt. 44, 4582-4588 (2005). [CrossRef] [PubMed]
  14. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748-779 (2001). [CrossRef] [PubMed]
  15. "Laser and Laser-Related Equipment--Test Methods for Laser Beam Parameters--Beam Width, Divergence and Beam Propagation factor," Report EN ISO 11146:2000 and EN ISO 11146:1999. (International Organization for Standardization, 2000).
  16. E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," AT&T Tech. J. 43, 1783-1809 (1964).
  17. M. Miyagi and S. Kawakami, "Design theory of dielectric coated circular metallic waveguide for infrared transmission," J. Lightwave Technol. LT-2, 116-126 (1984). [CrossRef]
  18. O. B. Danilov, M. I. Zintchenko, Y. A. Rubinov, and E. N. Sosnov, "Transmission losses and mode-selection characteristics of a curved hollow dielectric waveguide with a rough surface," J. Opt. Soc. Am. B 7, 1785-1790 (1990). [CrossRef]
  19. E. Matthias, J. Siegel, S. Petzoldt, M. Reichling, H. Skurk, O. Kading, and E. Neske, "In-situ investigation of laser ablation of thin films," Thin Solid Films 254, 139-146 (1995). [CrossRef]
  20. A. M. Prokhorov, V. V. Konov, I. Ursu, and I. N. Mihailescu, "Semi-infinite metal target," in Laser Heating of Metals (IOP, 1990), pp. 42-43.
  21. J. J. Degnan, "Waveguide laser modes patterns in the near and far field," Appl. Opt. 12, 1026-1030 (1973). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited