OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 36 — Dec. 20, 2006
  • pp: 9221–9229

Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 μm: new sensitivity limits for absorption measurements in passive optical cavities

Gregory S. Engel, Walter S. Drisdell, Frank N. Keutsch, Elisabeth J. Moyer, and James G. Anderson  »View Author Affiliations

Applied Optics, Vol. 45, Issue 36, pp. 9221-9229 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1508 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A robust absorption spectrometer using the off-axis integrated cavity output spectroscopy (ICOS) technique in a passive cavity is presented. The observed sensitivity, conceptually the detection threshold for the absorption cross section ( cm 2 ) multiplied by the concentration ( cm 3 ) and normalized by the averaging time, is measured to be 1.9 × 10 12 ( 1 / cm Hz ) . This high sensitivity arises from using the optical cavity to amplify the observed path length in the spectrometer while avoiding cavity resonances by careful design of the spot pattern within the cavity. The instrument is ideally suited for routine monitoring of trace gases in the near-infrared region. A spectrum showing ambient carbon monoxide at 1.57 μm is presented.

© 2006 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers

Original Manuscript: March 15, 2006
Revised Manuscript: August 22, 2006
Manuscript Accepted: September 1, 2006

Gregory S. Engel, Walter S. Drisdell, Frank N. Keutsch, Elisabeth J. Moyer, and James G. Anderson, "Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 μm: new sensitivity limits for absorption measurements in passive optical cavities," Appl. Opt. 45, 9221-9229 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Engeln, G. Berden, R. Peeters, and G. Meijer, "Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy," Rev. Sci. Instrum. 69, 3763-3769 (1998). [CrossRef]
  2. A. O'Keefe, J. J. Scherer, and J. B. Paul, "cw Integrated cavity output spectroscopy," Chem. Phys. Lett. 307, 343-349 (1999). [CrossRef]
  3. J. B. Paul, L. Lapson, and J. G. Anderson, "Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment," Appl. Opt. 40, 4904-4910 (2001). [CrossRef]
  4. D. Z. Anderson, J. C. Frisch, and C. S. Masser, "Mirror reflectometer based on optical cavity decay time," Appl. Opt. 23, 1238-1245 (1984). [CrossRef] [PubMed]
  5. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Uenten, D. S. Urevig, D. J. Spencer, and D. J. Bernard, "Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method," Appl. Opt. 19, 144-147 (1980). [CrossRef] [PubMed]
  6. A. O'Keefe and D. A. G. Deacon, "Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988). [CrossRef]
  7. J. Ye, L. S. Ma, and J. L. Hall, "Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy, J. Opt. Soc. Am. B 15, 6-15 (1998). [CrossRef]
  8. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, and R. L. Byer, "A laser-locked cavity ringdown spectrometer employing an analog detection scheme," Rev. Sci. Instrum. 71, 347-353 (2000). [CrossRef]
  9. K. K. Lehmann and D. Romanini, "The superposition principle and cavity ringdown spectroscopy," J. Chem. Phys. 105, 10263-10277 (1996).
  10. G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, "Coherent cavity ringdown spectroscopy," Chem. Phys. Lett. 217, 112-116 (1994). [CrossRef]
  11. J. Morville, D. Romanini, M. Chenevier, and A. Kachanov, "Effects of laser phase noise on the injection of a high-finesse cavity," Appl. Opt. 41, 6980-6990 (2002). [CrossRef] [PubMed]
  12. A. L. Schawlow and C. H. Townes, "Infrared and optical masers," Phys. Rev. , 112, 1940-1949 (1958). [CrossRef]
  13. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1965).
  14. W. Press, S. Teukolsky, W. Vetterling, and B. P. Flannery Numerical Recipes in C: The art of Scientific Computing (Cambridge U. Press, 1992).
  15. Z. Li, R. G. T. Bennett, and G. E. Stedman, "Swept-frequency induced optical cavity ringing," Opt. Commun. 86, 51-57 (1991). [CrossRef]
  16. K. K. Lehmann, Math-CAD Worksheet University of Virginia, Charlottesville, Virginia (personal communication, May 2003).
  17. J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, "Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams," Chem. Rev. (Washington, D.C.) 97, 25-52 (1997).
  18. G. Berden, R. Peeters, and G. Meijer, "Cavity ringdown spectroscopy: Experimental schemes and applications," Int. Rev. Phys. Chem. 19, 565-607 (2000). [CrossRef]
  19. G. S. Engel, "Cavity enhanced spectroscopic techniques for in situ measurement: pushing the limits of sensitivity," Ph.D. dissertation (Harvard University, 2004).
  20. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandlin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001," J. Quant. Spectrosc. Radiat. Trans. 82, 5-44 (2003). [CrossRef]
  21. P. Rabinowitz, B. N. Perry, and N. Levinos, "A continuously tunable sequential stokes raman laser," IEEE J. Quantum Electron. 22, 797-802 (1986). [CrossRef]
  22. J. B. Paul, "Infrared cavity ringdown laser absorption spectroscopy of water clusters," Ph.D. dissertation (University of California, Berkeley, Calif., 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited