Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Extension of Chandrasekhar's formula to a homogeneous non-Lambertian surface and comparison with the 6S formulation

Not Accessible

Your library or personal account may give you access

Abstract

The classical Chandrasekhar's formula relating the surface reflectance to the top of the atmosphere radiance rigorously applies to a Lambertian surface. For a homogeneous non-Lambertian surface in a plane-parallel atmosphere, an extension of this formula was proposed in the 1980s and has been recently implemented in the second simulation of the satellite signal in the solar spectrum (6S) algorithm. To analyze this extension, the rigorous formula of the top of the atmosphere signal is derived in a plane-parallel atmosphere bounded by a homogeneous non-Lambertian surface. Then the 6S algorithm extension is compared with the exact formula and approximations and their validity are pointed out. The methods used for the derivation of the exact formula are classical. They are based on the separation of direct and diffuse components of the radiation fields, on the introduction of the Green's function of the problem, and on integrations of boundary values of the radiation fields with the Green's function.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Green’s function method for the radiative transfer problem. I. Homogeneous non-Lambertian surface

Alexei Lyapustin and Yuri Knyazikhin
Appl. Opt. 40(21) 3495-3501 (2001)

Top-of-atmosphere reflectance over homogeneous Lambertian and non-Lambertian surfaces

Tatiana Russkova and Tatiana Zhuravleva
Appl. Opt. 57(22) 6345-6357 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (63)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.